Порядок выполнения действий
Содержание:
- Порядок вычислений в выражениях со скобками
- Задачи на умножение-деление в предалах 100.
- Учитель начальных классов
- Математика 2 класс. Разрезные карточки
- Правило встречается в следующих упражнениях:
- Задачи на умножение и деление 2 класс в два действия
- Задачи на сложение-вычитание в пределах 20.
- Основные операции в математике
- Источники
- Задачи на нахождение неизвестного слагаемого
- Примеры со скобками, урок с тренажерами.
- 4) Вставь пропущенное число — примеры со скобками. Тренажер
- Предварительный просмотр:
- Порядок вычислений в выражениях со скобками
Порядок вычислений в выражениях со скобками
Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:
Определение 3
Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.
Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание
Пример 4
Условие: вычислите, сколько будет 5+(7−2·3)·(6−4)2.
Решение
В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7−2·3. Здесь нам надо умножить 2 на 3 и вычесть результат из 7:
7−2·3=7−6=1
Считаем результат во вторых скобках. Там у нас всего одно действие: 6−4=2.
Теперь нам нужно подставить получившиеся значения в первоначальное выражение:
5+(7−2·3)·(6−4)2=5+1·22
Начнем с умножения и деления, потом выполним вычитание и получим:
5+1·22=5+22=5+1=6
На этом вычисления можно закончить.
Ответ: 5+(7−2·3)·(6−4)2=6.
Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.
Пример 5
Условие: вычислите, сколько будет 4+(3+1+4·(2+3)).
Решение
У нас есть скобки в скобках. Начинаем с 3+1+4·(2+3), а именно с 2+3. Это будет 5. Значение надо будет подставить в выражение и подсчитать, что 3+1+4·5. Мы помним, что сначала надо умножить, а потом сложить: 3+1+4·5=3+1+20=24. Подставив найденные значения в исходное выражение, вычислим ответ: 4+24=28.
Ответ: 4+(3+1+4·(2+3))=28.
Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.
Допустим, нам надо найти, сколько будет (4+(4+(4−62))−1)−1. Начинаем с выражения во внутренних скобках. Поскольку 4−62=4−3=1, исходное выражение можно записать как (4+(4+1)−1)−1. Снова обращаемся к внутренним скобкам: 4+1=5. Мы пришли к выражению (4+5−1)−1. Считаем 4+5−1=8 и в итоге получаем разность 8-1, результатом которой будет 7.
Задачи на умножение-деление в предалах 100.
1. Ученики 1 класса по заданию учительницы взяли в библиотеке по 2 сказки Пушкина. Сколько всего сказок Пушкина выдал библиотекарь второклассникам, если известно, что во втором классе учится 20 человек?
2. Концертный зал имеет 11 рядов, в каждом ряду по 12 кресел. Сколько зрительских мест в этом зале?
3. Чтобы полить одну грядку с огурцами, бабушке нужно 3 л воды. Сколько литров воды потребуется бабушке, чтобы полить 6 таких грядок?
4. В первой банке 12 литров сока. Во второй — в 2 раза меньше. Сколько сока надо перелить из первой банки во вторую, чтобы в обеих банках стало сока поровну?
5. У белки в дупле заготовлены на зиму грибы и орехи. Грибов белка заготовила 86 штук, а орехов всего 4 штуки. Во сколько раз больше белка заготовила грибов, чем орехов?
6. Расстояние от глаз телезрителя до экрана телевизора должна быть в 4 раза больше, чем диагональ экрана. каким должно быть это расстояние, если диагональ экрана равна 36 см?
7. Акула за 10 минут проплывает 1 000 м. Какое расстояние она проплывает за 1 минуту?
8. Заяц за час может пробежать 60 км, а волк на 15 км меньше. какое расстояние может пробежать волк за 1 час?
9. Миша каждый день решал по 5 математических задач. Сколько задач Миша решил за неделю?
10. В магазине в понедельник продали 26 сказок Пушкина, а во вторник в 2 раза меньше. Сколько сказок было всего продано за 2 дня?
Уважаемые читатели!
Все материалы с сайта можно скачивать абсолютно бесплатно. Все материалы проверены антивирусом и не содержат скрытых скриптов.
Материалы в архиве не помечены водяными знаками!
Если материал нарушает чьи-то авторские права, просьба написать нам по обратной связи, указав авторство материала. Мы обязуемся либо убрать материал, либо указать прямую ссылку на автора.
Сайт пополняется материалами на основе бесплатной работы авторов. Eсли вы хотите отблагодарить их за работу и поддержать наш проект, вы можете перевести любую, не обременительную для вас сумму на счет сайта.
Заранее Вам спасибо!!!
Учитель начальных классов
2 класс. Математика. ТЕМА: Выражения со скобками
ТЕМА: Выражения со скобками
Математический диктант. Запиши каллиграфически результаты через запятую.
· Найди сумму чисел 7 и 4.
· Найди разность чисел 13 и 5.
· К какому числу нужно прибавить 3, чтобы получить 11?
· Из какого числа надо вычесть 4, чтобы получить 8?
· Слагаемые 9 и 5. Найди сумму.
· Уменьшаемое 13, вычитаемое 4. Чему равна разность?
· На сколько 11 больше 3?
· На сколько 4 меньше 12?
· Сумма равна 14, первое слагаемое 5. Чему равно второе?
· Первое число 11, второе на 2 меньше. Чему равно второе?
· Первое число 8, второе на 5 больше. Чему равно второе?
· На сколько надо увеличить 9, чтобы получить 14?
2) Вставь пропущенные знаки действий «+» или « — ».
· 5 … 4 … 3 … 2 … 1 … = 3
· 5 … 4 … 3 … 2 … 1 … = 5
3) У дощечки было 4 угла, один отпилили. Сколько углов осталось? Ответ покажи, начертив эту фигуру.
4) ПРАВИЛО: Если надо прибавить или вычесть сумму либо разность , то ее записывают в скобках.
Учись правильно читать выражения со скобками:
К числу 8 прибавить разность 7 и 5. 8 + (7 – 5)
Из числа 12 вычесть сумму 6 и 4. 12 – (6 + 4)
ЗАДАНИЕ: Запиши выражения, используя скобки. Научись правильно читать их!
· К сумме чисел 2 и 6 прибавить 2.
· Из числа 9 вычесть сумму 5 и 2.
· К числу 3 прибавить разность 7 и 6.
· К числу 4 прибавить сумму 2 и 3.
5) Какое выражение записано в скобках – сумма или разность? Прочитай выражения, как мы только что учились.
70 – (60 – 50) 40 – (80 – 70) 84 + (7 – 6) (65 – 5) – 20 (90 — 19) – 8 99 – (19 – 10)
6) Лена и Саша находили значения выражений по-разному. Объясни, как каждый из них рассуждал. Почему результаты вычислений получились одинаковыми?
Лена: 6 + 1 + 3 = (6 + 1) + 3 = 10 Саша: 6 + 1 + 3 = 6 + (1 + 3) = 10
ВЫВОД: Числа можно складывать в любом порядке!
7) Как разными способами можно найти значение суммы: 7 + 1 + 3?
Прокомментируй запись: 7 + (1 + 3) = (7 + 1) + 3. Сравни записи выражений.
Сделай предположение о значениях этих выражений. Каков вывод можно сделать?
В выражении со скобками первыми выполняют действия в скобках.
В выражении без скобок действия выполняют так, как они записаны, — слева направо.
ЗАДАНИЕ: Прочитай выражения, запиши, укажи над каждым действием порядок выполнения действий .
6 + (12 – 2) 8 – (4 + 2) (34 + 12) – 23 56 – 43 + 21 45 – 12 + 22
34 + (67 – 55) 45 – (3 + 2) (44 + 22) – 6 42 – (36 – 6) 44 + 6 – 22
9) Вычисли, соблюдая порядок выполнения действий, подписывая промежуточный ответ.
24 + ( 9 – 7) 7 + (9 – 6)
89 – (67 – 55) 8 — (4 + 3)
(45 – 32) + 23 9 – (5 – 4)
10) Работа по учебнику: с. 40 № 222, 223, 224
11) Домашнее задание: выучить все правила! Реши № 225, 226.
Источник
Математика 2 класс. Разрезные карточки
В настоящем пособии предложен дидактический материал по математике для 2 класса. Задания-карточки предназначены для организации самостоятельной дифференцированной работы обучающихся и содержат разнообразный материал, который может быть использован на различных этапах изучения темы. Данное пособие окажет помощь учителю в подборе дополнительных заданий как для усвоения, так и закрепления программного материала. Пособие адресовано учителям начальной школы, может быть полезно студентам педагогических заведений, а также родителям.
Подробное описание Введение Дидактический материал по математике для 2 класса (1–4) окажет помощь в подборе дополнительных заданий для усвоения программного материала, закрепления по всем темам Основными целями данного пособия являются: – помощь в достижении и овладении обязательным уровнем усвоения программы по математике за 2 класс; – развитие у детей интереса к математике; – формирование стремления к решению все более сложных задач и упражнений; – приобретение новых вычислительных навыков и их совершенствование; – воспитание самостоятельности в принятии и поиске вариантов решения. Материал включает в себя задания по основным разделам и темам курса, указанным на протяжении всего пособия. Например: I Раздел: Числа от 1 до 100. Нумерация. Тема № 1: Числа от 1 до 20. Тема № 2: Счет десятками. Образование и запись чисел от 20 до 100. Тема № 3: Поместное значение цифр. И так далее. В каждой теме предлагается по 3 карты. В целях обеспечения дифференциации обучения и самостоятельности детей карта дана в трех вариантах. В-1. – Ориентирован на минимальный уровень требований и предлагается слабо- и среднеуспевающим детям. В-2. – Рассчитан на учащихся с хорошим уровнем математических знаний и умений. В-3. – Предлагается «сильным» ученикам, так как имеет задания повышенной трудности. Надо отметить, что к концу учебного года во всех вариантах прослеживается усложнение предлагаемых заданий. Данными карточками могут пользоваться учителя, работающие в классах как традиционного, так и развивающего обучения. Содержание Раздел I. Числа от 1 до 100. Нумерация 4 Тема: Числа от 1 до 20 4 Тема: Счет десятками. Образование и запись чисел от 20 до 100 8 Тема: Поместное значение цифр 13 Тема: Однозначные и двузначные числа 18 Тема: Миллиметр. Закрепление 22 Тема: Число 100 28 Тема: Метр. Таблица единиц длины 31 Тема: Сложение и вычитание вида 35 + 5, 35 – 30, 35– 5. 36 Тема: Замена двузначного числа суммой разрядных слагаемых (36 = 30 + 6). 40 Тема: Рубль, копейка. Закрепление 44 Раздел II. Сложение и вычитание 48 Тема: Задачи, обратные данной. Сумма и разность отрезков. 48 Тема: Задачи на нахождение неизвестного уменьшаемого и вычитаемого. 53 Тема: Час, минута. Определение времени по часам. Закрепление 58 Тема: Длина ломаной. Закрепление 62 Тема: Порядок действий. Скобки 67 Тема: Числовое выражение 71 Тема: Сравнение числовых выражений 75 Тема: Периметр многоугольника 81 Тема: Свойства сложения 84 Тема: Упражнения для закрепления 87 Раздел III. Числа от 1 до 100. Умножение и деление 91 Тема: Конкретный смысл действия умножения 91 Тема: Прием умножения с помощью сложения 96 Тема: Задачи на нахождение произведения 100 Тема: Периметр прямоугольника 104 Тема: Приемы умножения единицы и нуля 108 Тема: Названия компонентов и результата умножения 112 Тема: Переместительное свойство умножения 117 Тема: Конкретный смысл действия деления (с помощью решения задач на деление по содержанию) 122 Тема: Конкретный смысл действия деления (с помощью решения задач на деление на равные части) 127 Тема: Названия компонентов и результата деления 131 Тема: Связь между компонентами и результатом умножения 135 Тема: Прием деления, основанный на связи между компонентами и результатом умножения 139 Тема: Приемы умножения и деления на 10 144 Тема: Задачи с величинами: цена, количество, стоимость 148 Тема: Табличное умножение и деление. Умножение числа 2 и на 2. Приемы умножения числа 2 151 Тема: Деление на 2. Закрепление 155 Тема: Умножение числа 3 и на 3 159 Тема: Деление на 3. Закрепление 163 Тема: Повторение пройденного материала за год 167 Литература 172
Авторы: Стромчинская Е. М. Код: 320е Страниц: 175 ISBN: 978-5-7057-1774-3 Серия: Дидактический материал Вес: 131г
Правило встречается в следующих упражнениях:
2 класс
Страница 55. Вариант 2. № 2,
Моро, Волкова, Проверочные работы
Страница 68. Вариант 1. Тест 1,
Моро, Волкова, Проверочные работы
Страница 69. Вариант 2. Тест 1,
Моро, Волкова, Проверочные работы
Страница 15,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 23,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 53,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 57,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 59,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 66,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 91,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
3 класс
Страница 33,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 82,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 111,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 17. Вариант 2. № 3,
Моро, Волкова, Проверочные работы
Страница 80. Вариант 1. Проверочная работа 1,
Моро, Волкова, Проверочные работы
Страница 13,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 35,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 111,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 58,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 76,
Моро, Волкова, Рабочая тетрадь, часть 2
4 класс
Страница 9,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 34,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 99,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 40,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 53,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 67. Тест. Вариант 2,
Моро, Волкова, Проверочные работы
Страница 61,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 85,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 91,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 94,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
5 класс
Задание 64,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 74,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Номер 4,
Мерзляк, Полонский, Якир, Учебник
Номер 237,
Мерзляк, Полонский, Якир, Учебник
Номер 244,
Мерзляк, Полонский, Якир, Учебник
Номер 368,
Мерзляк, Полонский, Якир, Учебник
Номер 387,
Мерзляк, Полонский, Якир, Учебник
Номер 455,
Мерзляк, Полонский, Якир, Учебник
Номер 919,
Мерзляк, Полонский, Якир, Учебник
Номер 920,
Мерзляк, Полонский, Якир, Учебник
6 класс
Задание 18,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 85,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 400,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 411,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 413,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 417,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 422,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 425,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 445,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 454,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задачи на умножение и деление 2 класс в два действия
КАРТОЧКА 1
Прочитай задачи. Запиши решение и ответ.
- В магазине продаются 5 наборов кастрюль по 3 штуки в наборе и ещё 9 кастрюль отдельно. Сколько всего кастрюль продаётся в магазине?
- Антон поймал 16 окуней, а щук в 2 раза меньше. Сколько всего рыб поймал Антон?
- Идёт колонна солдат: 9 рядов по 2 солдата и 3 солдата впереди. Сколько солдат идёт в колонне?
КАРТОЧКА 2
Прочитай задачи. Запиши решение и ответ.
- Борис отжимается от пола 27 раз, а Руслан в 3 раза меньше. На сколько меньше отжиманий делает Руслан?
- Один класс выучил 7 песен, это в 2 раза меньше, чем второй. Сколько всего песен выучили два класса?
- Оксана сложила из спичек один шестиугольник и 8 одинаковых треугольников. Сколько спичек использовала Оксана?
КАРТОЧКА 3
Прочитай задачи. Запиши решение и ответ.
- 12 красных и 6 жёлтых яблок разложили поровну на 2 тарелки. Сколько яблок лежит на каждой тарелке?
- Школьники посадили 2 ряда яблонь по 8 деревьев и 17 грушевых деревьев. Сколько всего деревьев посадили школьники?
- На трёх ветках сидело по 6 воробьёв. Прилетело ещё 13 воробьёв. Сколько стало птиц?
КАРТОЧКА 4
Прочитай задачи. Запиши решение и ответ.
- 3 ящика с бананами весят 30 кг, а ящик с хурмой 4 кг. На сколько легче ящик с хурмой?
- Глубина колодца 50 метров, а глубина оврага на 40 метров меньше. Во сколько раз глубина оврага меньше, чем глубина колодца?
- Когда портниха пришила по 5 пуговиц к 3 пальто, у неё осталось 37 пуговиц. Сколько пуговиц было у портнихи?
КАРТОЧКА 5
Прочитай задачи. Запиши решение и ответ.
- На двух этажах 14 окон. Сколько окон на трёх этажах?
- В двух вёдрах 20 литров молока. Сколько молока в 8 таких же вёдрах?
- Почтальон разнёс 8 журналов, а газет в 3 раза больше. Сколько газет и журналов разнёс почтальон?
КАРТОЧКА 6
Прочитай задачи. Запиши решение и ответ.
- Таня купила 4 ручки по 3 рубля и тетрадь по 19 рублей. Сколько денег она заплатила?
- С одной грядки собрали 17кг клубники, а с другой 13кг. Клубнику разложили в корзины по 3 кг в каждом. Сколько получилось корзин?
- Настя собрала 38 орехов, а Петя — 42 ореха. Все орехи рассыпали в пакеты по 10 орехов в каждый. Сколько понадобилось пакетов?
КАРТОЧКА 7
Прочитай задачи. Запиши решение и ответ.
- Для приготовления раствора строители взяли 7 кг цемента, а песка в 3 раза больше. Сколько строительного материала было приготовлено?
- 20 яиц идёт на приготовление 10 порций омлета. Сколько яиц нужно для приготовления 5 порций?
- У Саши 15 жёлтых шаров. Это в 3 раза больше, чем красных. На сколько меньше красных шаров у Саши?
КАРТОЧКА 8
Прочитай задачи. Запиши решение и ответ.
- Катя нарисовала 14 картин, а её подруга в 2 раза меньше. На сколько больше картин нарисовала Катя?
- В зале 5 колонн украсили 50 шариками. Сколько нужно шариков, чтобы украсить 8 колонн?
- В 10 коробках — 60 карандашей. Сколько надо взять коробок, чтобы разместить 12 таких же карандашей?
КАРТОЧКА 9
Прочитай задачи. Запиши решение и ответ.
- В трёх вазах лежало по 9 яблок. 8 яблок съели. Сколько яблок осталось?
- Когда в кафе сидело 9 посетителей, свободных мест оставалось в 3 раза больше, сколько посетителей может принять кафе?
- Одна курочка снесла 6 яиц, это в 3 раза меньше, чем другая. Сколько яиц они снесли вместе?
КАРТОЧКА 10
Прочитай задачи. Запиши решение и ответ.
- Для уроков труда купили 4 набора цветной бумаги по10 листов в каждом наборе. На поделки истратили 18 листов. Сколько листов осталось?
- Свете 18 лет, а Юля в 2 раза моложе. На сколько лет Юля младше Светы?
- 3 утки вывели по 9 утят, а гусыня — 8. На сколько меньше родилось гусят, чем утят?
КАРТОЧКА 11
Прочитай задачи. Запиши решение и ответ.
- Соловей летел 3 дня по 10 км и ещё день 14 км. Какой путь пролетел соловей?
- У Алёши 63 сказки. В трёх книгах по 8 сказок, остальные на дисках. Сколько сказок на дисках?
- Дети смастерили 54 игрушки. 10 мальчиков сделали по 2 игрушки. Сколько игрушек изготовили девочки?
Задачи на сложение-вычитание в пределах 20.
1. Поезд прибыл на станцию в 14 часов 19 минут, а должен был согласно расписанию прибыть в 14 часов 14 минут. На сколько минут поезд опоздал?
2. Витя на школьном турнире по шашкам выиграл в 6 партиях, а проиграл в 3. Сколько партий Витя сыграл вничью, если всего он сыграл 12 раз.
3. Гусь весит 9 кг, а курица на 7 кг меньше. Сколько весят курица и гусь вместе?
4. Бабушка собрала урожай огурцов. Старшей дочери она отвезла 2 ведра огурцов, младшей столько же, а сыну — 3 ведра огурцов. Сколько всего ведер огурцов бабушка отвезла детям?
5. Саша, помогая маме, вымыл 8 тарелок, 4 вилки, 3 кружки и 1 чашку. Сколько всего предметов вымыл Саша?
6. Дима собрал 5 стаканов малины. Бабушка 8 стаканов. На варенье ушло 10 стаканов малины. Сколько стаканов ягоды осталось?
7. В кувшине 4 стакана молока. В бидоне — 8 стаканов молока. За обедом дети выпили 5 стаканов молока. Сколько всего молока осталось?
8. После обеда Наташа гуляла во дворе 2 часа. Затем она целый час делала домашнее задание. После этого 1 час занималась музыкой и 1 час рисовала. В это время ее позвали ужинать. Во сколько был ужин у Наташи, если обедала она в 2 часа дня.
9. У Ани есть старшая сестра Юля и младший брат Толя. Толе 5 лет. Аня старше его на 3 года. А Юля старше Толи на 8 лет. На сколько лет Аня младше Юли?
10. На салат пошло 6 огурцов, 5 помидоров и редисок столько, сколько огурцов и помидоров вместе. Сколько всего овощей пошло на салат?
Основные операции в математике
Основные операции, которые используют в математике — это сложение, вычитание, умножение и деление. Помимо этих операций есть ещё операции отношения, такие как равно (=), больше (>), меньше (<), больше или равно (≥), меньше или равно (≤), не равно (≠).
Операции действия:
- сложение (+)
- вычитание (-)
- умножение (*)
- деление (:)
Операции отношения:
- равно (=)
- больше (>)
- меньше (<)
- больше или равно (≥)
- меньше или равно (≤)
- не равно (≠)
Сложение — операция, которая позволяет объединить два слагаемых.
Запись сложения: 5 + 1 = 6, где 5 и 1 — слагаемые, 6 — сумма.
Вычитание — действие, обратное сложению.
Запись вычитания: 10 — 1 = 9, где 10 — уменьшаемое, 1 — вычитаемое, 9 — разность.
Если разность 9, сложить с вычитаемым 1, то получится уменьшаемое 10. Операция сложения 9 + 1 = 10 является контрольной проверкой вычитания 10 — 1 = 9.
Умножение — арифметическое действие в виде краткой записи суммы одинаковых слагаемых.
- Запись: 3 * 4 = 12, где 3 — множимое, 4 — множитель, 12 — произведение.
- 3 * 4 = 3 + 3 + 3 + 3
В случае, если множимое и множитель поменять ролями, произведение остается одним и тем же. Например: 5 * 2 = 5 + 5 = 10.
Поэтому и множитель, и множимое называют сомножителями.
Деление — арифметическое действие обратное умножению.
Запись: 30 : 6 = 5 или 30/6 = 5, где 30 — делимое, 6 — делитель, 5 — частное.
В этом случае произведение делителя 6 и частного 5, в качестве проверки, дает делимое 30.
Если в результате операции деления, частное является не целым числом, то его можно представить в виде дроби.
Возведение степень — операция умножения числа на самого себя несколько раз.
Основание степени — число, которое повторяется сомножителем определённое количество раз.
Показатель степени — число, которое указывает, сколько раз берется одинаковый множитель.
Степенью называется число, которое получается в результате взаимодействия основания и показателя степени.
- Запись: 34 = 81, где 3 — основание степени, 4 — показатель степени, 81 — степень.
- 3^4 = 3 * 3 * 3 * 3
Вторая степень называется квадратом, третья степень — кубом. Первой степенью числа называют само это число.
Извлечение корня — арифметическое действие, обратное возведению в степень.
- Запись: 4√81 = 3, где 81 — подкоренное число, 4 — показатель корня, 3 — корень.
- З^4 = 81 — возведение числа 3 в четвертую степень дает 81 (проверка извлечения корня).
- 2√16 = 4 — корень второй степени называется — квадратным.
При знаке квадратного корня показатель корня принято опускать: √16 = 4.
3√8 = 2 — корень третьей степени называется — кубическим.
Сложение и вычитание, умножение и деление, возведение в степень и извлечение корня попарно представляют обратные друг другу действия. Далее узнаем порядок выполнения арифметических действий.
Источники
Задачи на нахождение неизвестного слагаемого
1. Таня купила 5 российских марок и 13 иностранных. Когда она купила ещё несколько марок, их у неё стало 20. Сколько ещё марок купила Таня?2. В депо пришло 4 поезда. Через час пришло ещё 3 поезда. Сколько поездов пришло ещё через час, если их стало 9?3. У Максима было 3 синие ручки и столько же чёрных. После того как он купил ещё несколько ручек, их у него стало 10. Сколько ручек купил Максим?4. На одной полке в магазине стояло 20 пакетов с соком, на другой 15. Денис купил несколько пакетов, и на полках остался 31 пакет. Сколько пакетов купил Денис?5. В посёлке построили 14 одноэтажных и 3 двухэтажных дома. Когда построили ещё несколько домов, в посёлке стало 20 новых домов. Сколько ещё домов построили?6. Алина в гербарий положила 4 кленовых и 5 дубовых листьев. После того как она нашла ещё несколько красивых листьев, в гербарии стало 16 листьев. Сколько ещё листьев нашла Алина?7. У тёти Люси было 7 пакетиков с семенами. Она купила несколько пакетиков с семенами огурцов и 5 пакетиков с семенами помидоров, и у неё стало 15 пакетиков с семенами. Сколько пакетиков с семенами огурцов купила тётя Люся?8. На столе лежало 3 пирожных. После того как мама положила на стол 5 безе и несколько эклеров, на столе стало 11 пирожных. Сколько эклеров положила мама на стол?9. У хомяков было 4 орешка. Им в клетку положили 2 грецких и несколько земляных орешков, и у них стало 15 орешков. Сколько земляных орешков положили в клетку?10. У причала стояло 6 катеров. Утром причалило 3 катера и несколько катеров причалило вечером, и после этого у причала стало 19 катеров. Сколько катеров причалило вечером?
1. Таня купила 5 российских марок и 13 иностранных. Когда она купила ещё
несколько марок, их у неё стало 20. Сколько ещё марок купила Таня?
1) 5 + 13 = 18 (м.) купила Таня.
2) 20 — 18 = 2 (м.) купила еще.
Ответ: 2 марки.
2. В депо пришло 4 поезда. Через час пришло ещё 3 поезда. Сколько поездов пришло
ещё через час, если их стало 9?
1) 4 + 3 = 7 (п.) пришло в депо.
2) 9 — 7 = 2 (п.) пришло еще.
Ответ: 2 поезда.
3. У Максима было 3 синие ручки и столько же чёрных. После того как он купил ещё
несколько ручек, их у него стало 10. Сколько ручек купил Максим?
1) 3 + 3 = 6 (р.) всего.
2) 10 — 6 = 4 (р.) купили еще.
Ответ: 4 ручки.
4. На одной полке в магазине стояло 20 пакетов с соком, на другой 15. Денис
купил несколько пакетов, и на полках остался 31 пакет. Сколько пакетов купил
Денис?
1) 20 + 15 = 35 (п.) стояло.
2) 35 — 31 = 4 (п.) купил Денис.
Ответ: 4 пакета.
5. В посёлке построили 14 одноэтажных и 3 двухэтажных дома. Когда построили ещё
несколько домов, в посёлке стало 20 новых домов. Сколько ещё домов построили?
1) 14 + 3 = 17 (д.) построили.
2) 20 — 17 = 3 (д.) построили еще.
Ответ: 3 дома.
6. Алина в гербарий положила 4 кленовых и 5 дубовых листьев. После того как она
нашла ещё несколько красивых листьев, в гербарии стало 16 листьев. Сколько ещё
листьев нашла Алина?
1) 4 + 5 = 9 (л.) было в гербарии.
2) 16 — 9 = 7 (л.) нашла Алина.
Ответ: 7 листов.
7. У тёти Люси было 7 пакетиков с семенами. Она купила несколько пакетиков с
семенами огурцов и 5 пакетиков с семенами помидоров, и у неё стало 15 пакетиков
с семенами. Сколько пакетиков с семенами огурцов купила тётя Люся?
1) 7 + 5 = 12 (п.) стало без пакетов с огурцами.
2) 15 — 12 = 3 (п.) с огурцами.
Ответ: 3 пакета.
8. На столе лежало 3 пирожных. После того как мама положила на стол 5 безе и
несколько эклеров, на столе стало 11 пирожных. Сколько эклеров положила мама на
стол?
1) 3 + 5 = 8 (п.) без эклеров.
2) 11 — 8 = 3 (п.) эклеров.
Ответ: 3 эклера.
9. У хомяков было 4 орешка. Им в клетку положили 2 грецких и несколько земляных
орешков, и у них стало 15 орешков. Сколько земляных орешков положили в клетку?
1) 4 + 2 = 6 (ор.) без земляных орехов.
2) 16 — 6 = 10 (ор.) земляных.
Ответ: 10 орехов.
10. У причала стояло 6 катеров. Утром причалило 3 катера и несколько катеров
причалило вечером, и после этого у причала стало 19 катеров. Сколько катеров
причалило вечером?
1) 6 + 3 = 9 (к.) было катеров утром.
2) 19 — 9 = 10 (к.) причалило вечером.
Ответ: 10 катеров.
Примеры со скобками, урок с тренажерами.
Мы рассмотрим в этой статье три варианта примеров:
2. Примеры со скобками (сложение, вычитание, умножение, деление)
3. Примеры, в которых много действий
1 Примеры со скобками (действия сложения и вычитания)
Рассмотрим три примера. В каждом из них порядок действий обозначен цифрами красного цвета:
Мы видим, что порядок действий в каждом примере будет разный, хотя числа и знаки одинаковые. Это происходит потому, что во втором и третьем примере есть скобки.
- Если в примере нет скобок, мы выполняем все действия по порядку, слева направо.
- Если в примере есть скобки, то сначала мы выполняем действия в скобках, и лишь потом все остальные действия, начиная слева направо.
*Это правило для примеров без умножения и деления. Правила для примеров со скобками, включающих действия умножения и деления мы рассмотрим во второй части этой статьи.
Чтобы не запутаться в примере со скобками, можно превратить его в обычный пример, без скобок. Для этого результат, полученный в скобках, записываем над скобками, далее переписываем весь пример, записывая вместо скобок этот результат, и далее выполняем все действия по порядку, слева направо:
В несложных примерах можно все эти операции производить в уме. Главное — сначала выполнить действие в скобках и запомнить результат, а затем считать по порядку, слева направо.
А теперь — тренажеры!
4) Вставь пропущенное число — примеры со скобками. Тренажер
2 Примеры со скобками (сложение, вычитание, умножение, деление)
Теперь рассмотрим примеры, в которых кроме сложения и вычитания есть умножение и деление.
Сначала рассмотрим примеры без скобок:
- Если в примере нет скобок, сначала выполняем действия умножения и деления по порядку, слева направо. Затем — действия сложения и вычитания по порядку, слева направо.
- Если в примере есть скобки, то сначала мы выполняем действия в скобках, затем умножение и деление, и затем — сложение и вычитание начиная слева направо.
Есть одна хитрость, как не запутаться при решении примеров на порядок действий. Если нет скобок, то выполняем действия умножения и деления, далее переписываем пример, записывая вместо этих действий полученные результаты. Затем выполняем сложение и вычитание по порядку:
Если в примере есть скобки, то сначала нужно избавиться от скобок: переписать пример, записывая вместо скобок полученный в них результат. Затем нужно выделить мысленно части примера, разделенные знаками «+» и «-«, и посчитать каждую часть отдельно. Затем выполнить сложение и вычитание по порядку:
3 Примеры, в которых много действий
Если в примере много действий, то удобнее будет не расставлять порядок действий во всем примере, а выделить блоки, и решить каждый блок отдельно. Для этого находим свободные знаки «+» и «–» (свободные — значит не в скобках, на рисунке показаны стрелочками).
Эти знаки и будут делить наш пример на блоки:
А теперь закрепляем решение примеров на порядок действий на тренажерах!
Предварительный просмотр:
1) 1000 — (310 — 9 + 587 + 8 — 94 + 189) — 4
2) 782 — (2 + 72 + 2) — (13 — 7) — 686 — 8
3) 47 + 284 — 17 — (66 + 188) — (1000 — 956 + 9)
4) (65 + 145) + 99 — (41 — 32) — (360 — 67 — 1)
5) 193 + 7 — 193 — (335 + 349 — 93 — 579 — 9)
6) 23 + 1 + 483 — 19 — (904 + 96 — 991) — 474
7) 845 — 38 — (18 — 3 — 8) — (819 — 21) + 4
8) 811 — (70 — 6) — 6 — 651 — (1000 — 951 + 34)
9) 804 — (560 — 556) — (726 — 3) — (134 + 2 — 67)
10) 519 + 3 — (906 — 6 — 890 — 2 + 506 + 1) — 3
11) 35 + 6 + 51 + 346 — 4 — (1 + 914 + 85 — 571)
12) 701 — 1 — (129 — 57 — 5 + 625) — (42 — 6 — 34)
13) 1000 — (849 — 693 — 154 + 4 + 67 — 3) — (925 — 2)
14) 69 + (893 — 884) + 426 + (200 — 195) — 49 — (8 + 444)
15) 98 + 151 — 7 + 58 — (25 — 18 + 842 — 4 — 549)
16) 998 + 2 — (899 + 89 — 2) + 51 + 189 + 5 — 254
17) 506 — 6 — (808 — 376 + 59) — (432 + 7 — 438 + 2)
18) 1000 — (969 — 1) — (797 — 6 — 698 — 19 + 2 — 51)
19) 118 — (802 — 2 — 763) — 7 — (75 — 3) + (14 — 8)
20) 623 — 23 — (593 — 9 — 85 + 2) — 98 + 3
21) 14 — (902 + 98 — 991) + 924 — 8 — 825 — 91
22) 914 + 36 — 348 — (8 — 6) — (59 + 488 + 47)
23) 1000 — (4 + 924 — 6) — (703 — 6 — 642 + 16)
24) (400 — 326) + 441 — (81 — 8) + 4 — (436 + 2)
25) 669 — 69 — (42 + 520 — 5 + 36) — 3
26) 876 — (1000 — 910 + 1) — 2 + 79 — 857
27) 450 — (2 + 6) — (908 — 8 — 388 — 76)
28) 1000 — (32 + 881 — 4) — (109 — 21) + 4
29) (34 — 23) + (12 + 252) — 75 — (84 + 108)
30) 853 + 3 — (73 + 18 — 1 — 34) — 796
31) 997 + 3 — (3 + 941 — 45) — 9 — 87
32) 174 — (65 — 15 — 42) + 34 — (132 + 62)
33) 72 + 6 — (136 — 73) — (1000 — 987 — 5)
34) (46 + 868) — (16 — 2) — (837 — 17) — 72
35) 378 + 4 — (196 + 43 — 156 — 1) — 296
36) 991 + 9 — (60 — 56 — 3 + 988 + 6)
37) 38 + 491 — (10 — 8 + 27) — (503 — 9)
38) 1000 — (541 + 429) — (729 — 61 — 9 — 636)
39) (14 — 9) + (268 + 8) — 81 — (239 — 47)
40) 660 + 14 — 595 — (694 — 94 — 529 + 4)
41) 1000 — (78 + 1 + 473 — 74 + 516) — 1
42) 94 — (937 — 933) — (91 + 357 — 48 — 316)
43) 1000 — (938 — 4) — 8 — (5 + 40 + 6)
44) (811 — 57) — (40 + 8) — 6 — (620 + 72)
45) 787 + 7 — (57 — 8 + 45) — 699 + 3
46) 710 — (996 + 4 — 997 + 38 — 5) — 669
47) 416 + 5 — (31 — 1 — 9) — (467 — 73)
48) 1000 — (68 + 912) — (847 + 4 — 846 + 8)
49) (600 — 428) — (63 — 4) — 2 — (102 + 1)
Порядок вычислений в выражениях со скобками
Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:
Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.
Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.
Рассмотрим порядок выполнения действий на примерах со скобками.
Пример 1. Вычислить: 10 + (8 — 2 * 3) * (12 — 4) : 2.
Как правильно решить пример:
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.
Начнем с первого 8 — 2 * 3. Что сначала, умножение или вычитание? Мы уже знаем правильный ответ: умножение, затем вычитание. Получается так:
8 — 2 * 3 = 8 — 6 = 2.
Переходим ко второму выражению в скобках 12 — 4. Здесь только одно действие – вычитание, выполняем: 12 — 4 = 8.
Подставляем полученные значения в исходное выражение:
10 + (8 — 2 * 3) * (12 — 4) : 2 = 10 + 2 * 8 : 2.
Какое действие в полученном выражении делается первым, умножение или деление? Выполняем слева направо: умножение, деление, затем — вычитание. Получилось:
10 + 2 * 8 : 2 = 10 + 18 : 2 = 10 + 6 = 16.
На этом все действия выполнены.
Ответ: 10 + (7 — 2 * 3) * (12 — 4) : 2 = 16.
Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.
Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).
Как решаем:
Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:
2 + 3 = 5.
Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:
5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.
Исходное значение, после подстановки примет вид 9 + 24, и остается лишь выполнить сложение: 9 + 26 = 35.
Ответ: 4 + (3 + 1 + 4 * (2 + 3)) = 35.