Деление двузначного числа на однозначное

Деление двухзначного числа на однозначное

Двузначные числа редко делят столбиком. Это слишком долго, поэтому проще выработать навык для деления. Составим небольшой алгоритм. Для этого пошагово разберем пример деления двухзначного числа на однозначное: 95 на 5.

Первым шагом нужно решить, делится число нацело или нет. Раскладывать число на простые множители не лучший вариант, потому как это слишком долго. Поэтому нужно сравнить число с делителем, умноженным на 10. Если делимое меньше, то по таблице умножения легко определить ,делится это двухзначное число на однозначное или нет. Если делимое больше, то нужно из него вычесть делитель, умноженный на 10, и снова сравнить. Повторять процедуру нужно до тех пор, пока делимое не станет меньше делителя, умноженного на 10. И полученное число все так же проверяется по таблице умножения.

В нашем случае:95>(5*10)

95>50

95-50=45 – а 45 делится на 5 согласно таблице умножения.

Следующий шаг разбить делимое на числа равные делителю, умноженному на 10 и остаток.

95=50+45

Каждое из чисел согласно свойству деления разделить и умножить

(50+45):5=50:5+45:5=10+9=19

Вот так за три простых шага можно поделить двухзначное число на однозначное.

Что мы узнали?

Мы узнали, что такое деление, поговорили о свойствах деления и отдельно обсудили деление двухзначного числа на однозначное. Привели алгоритм такого деления и пошагово разобрали решение примера.

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Основные понятия

Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.

Название числа напрямую зависит от количества знаков. Однозначное — состоит из одного знака. Двузначное — из двух. Трехзначное — из трех и так далее.

Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.

  • Разряд единиц — то, чем заканчивается любое число.
  • Разряд десятков — то, что находится перед разрядом единиц.
  • Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.

Вычитание — это арифметическое действие, в котором отнимают меньшее число от большего. Большее число называется уменьшаемым, меньшее — вычитаемым. Результат их вычитания — разностью.

  1. Вычитание нуля из числа не изменяет этого числа.

    a — 0 = a

  2. Если из числа вычесть само это число, то разность равна нулю.

    a — a = 0

  3. Чтобы вычесть сумму из числа, можно вычесть из этого числа одно слагаемое, из полученной разности — второе слагаемое.

    a — (b + c) = a — b — c

  4. Чтобы вычесть число из суммы, можно вычесть это число из одного слагаемого и полученную разность прибавить к сумме остальных слагаемых.

    (a + b) — c = (a — c) + b = a + (b — c)

  5. Чтобы прибавить разность к числу, можно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.

    а + (b — c) = a + b — c

Алгоритм вычитания в столбик

Вычитать столбиком проще, чем считать в уме, особенно при действиях с большими числами. Этот способ наглядный — помогает держать во внимании каждый шаг.

Рассмотрим алгоритм вычитания в столбик на примере: 4312 — 901.

Шаг 1. При вычитании столбиком самое главное — правильно записать исходные данные, чтобы самая правая цифра первого числа была под правой цифрой второго числа.

Большее число (уменьшаемое) записываем сверху. Слева между числами ставим знак минус. Вот так:

Шаг 2. Вычитание столбиком начинаем с самой правой цифры. Вычитаем по цифре (знаку). Результат записываем под чертой.

Шаг 3. Далее вычитаем из второй цифры справа: из «1» ноль.

Шаг 4. Теперь нам нужно вычесть из «3» девять. Это сделать невозможно. Поэтому займем десятку у соседа слева от тройки. Это цифра «4». Поставим над четверкой точку. Занятый десяток прибавим к «3»: 10 + 3 = 13.

Из «13» вычтем девять: 13 − 9 = 4.

Так как мы заняли десяток у «4», значит четверка уменьшилось на единицу. Об этом нам напоминает точка над «4»: 4 − 1 = 3. Вот, как это выглядит:

Рассмотрим пример вычитания в столбик чисел с нулями: 1009 — 423.

Шаг 1. Запишем числа в столбик. Большее число ставим сверху.

Вычитаем справа налево по одной цифре.

Шаг 2. Так как из нуля нельзя вычесть «2», занимаем у соседней цифры слева (ноль). Поставим над «0» точку. У нуля занять нельзя, поэтому смотрим на следующую цифру. Занимаем у «1» и ставим над ней точку. Теперь вычитаем не из нуля двойку, а из «10». Вот так:

Запоминаем!
Если при вычитании столбиком над нулем стоит точка, значит ноль превращается в «9».

Шаг 3. Над нулем стоит точка, поэтому нуль превращается в «9». Вычитаем из «9» четыре: 9 − 4 = 5.

Над «1» стоит точка. Единица уменьшается на «1»: 1 − 1 = 0. Если в результате разности левее всех цифр стоит ноль, то его записывать не надо.

Так выглядит алгоритм вычитания в столбик. Во 2 классе школьники могут сделать себе подсказку в виде таблички. А позже алгоритм запомнится и будет срабатывать автоматически, как «дважды два четыре».

Чтобы запомнить алгоритм вычитания, нужно чаще решать примеры. Сделать это легко — в современной школе Skysmart обучение проходит в интерактивном формате и с учетом индивидуальных целей ученика.

Правила деления

Математики разработали методы деления в столбик, позволяющие существенно оптимизировать (ускорить) вычислительный процесс. Впервые они изучаются в 3 или 4 классе школ, дающих среднее образование. Однако перед его использованием следует рассмотреть некоторые свойства:

  1. Результат при делении положительного на отрицательное значение будет числом отрицательным, т. е. <0. Справедливо и обратное утверждение: если отрицательную величину разделить на положительную, то получится число <0.
  2. При делении положительных чисел получается только положительные значения.

Для начала следует разобрать операцию деления без остатка, поскольку она является довольно простой для понимания.

Методика деления без остатка

Перед применением методики требуется идентифицировать числовое значение. Оно должно быть составным. В этом случае и необходимо использовать этот алгоритм. Последний имеет такой вид, который будет разбираться на примере выражения «72/3»:

  1. Начертить вертикальную черту между делимым и делителем.
  2. Обозначить первый разряд (делимое): 7.
  3. Подобрать по таблице Пифагора (умножения) ближайшую величину, которая является целой, т. е. 3*2=6<7 (3 не подходит, поскольку 3*3=9>7). В поле результата записать «2», и умножить ее на делитель, указывая 6 под 7.
  4. Отнять от 7 величину 6: 7−6=1.
  5. После цифры, полученной в 4 пункте, записать 2 (перенести разряд единиц).
  6. Полученное значение делится на 3 без остатка: записать в результирующее поле 4.
  7. Умножить 3*4, а затем записать под 12 результат. Отнять от 12 последний: 12−12=0.

Искомое частное, полученное при выполнении операции 72/3, эквивалентно 12. Проверить правильность выполнения деления возможно посредством умножения в столбик чисел 12 и 3, 12*3=72.

Операция с остатком

Однако не всегда попадаются примеры, в которых одна величина делится нацело на другую. В этом случае рекомендуется воспользоваться алгоритмом следующего типа, который немного отличается от предыдущего (79/3):

  1. Проверку на принадлежность первого числа производить не нужно.
  2. Выделяется I первое делимое, которое является неполным: 7.
  3. Подбирается ближайшее значение второго множителя: 2*3=6 (2).
  4. Перемножаются делитель и множитель, а затем результат их произведения записывается под величиной во втором пункте методики.
  5. Отнимается одно значение от другого: 7−6=1.
  6. Сносится II неполное делимое: 19. Последняя величина на 3 не делится. Следовательно, в этом случае подбирается ближайшее целое: 3*6=18 (6).
  7. Множитель записывается в результирующее поле: 6. Далее он перемножается на делитель и записывается под 19, из которого его требуется отнять: 19−3*6=1.
  8. Результат разности меньше 3 и является остатком.
  9. Записывается искомый второй множитель с учетом остатка: 79/3=29 (+1).

Математики рекомендуют составить тренажер-карточки с алгоритмами, признаками делимости и методикой идентификации чисел. Они применяются только на начальных этапах обучения. В дальнейшем можно будет обойтись и без них, но для этого следует постоянно работать над собой, решая множество примеров.

Таким образом, при делении двузначного числа на однозначное следует владеть базовыми знаниями — методика определения типа числа, признаки делимости и алгоритмы выполнения операций с остатком и без него.

Разбор примеров на деление столбиком на двузначное число

Сначала рассмотрим простые случаи деления, когда в частном получается однозначное число.

Первое неполное делимое 265. Больше в делимом цифр нет. Значит в частном будет однозначное число.

Чтобы было легче подобрать цифру частного, разделим 265 не на 53, а на близкое круглое число 50. Для этого 265 разделим на 10, будет 26 (остаток 5). И 26 разделим на 5, будет 5 (остаток 1). Цифру 5 нельзя сразу записывать в частном, поскольку это пробная цифра. Сначала нужно проверить, подойдет ли она. Умножим 53*5=265. Мы видим, что цифра 5 подошла. И теперь можем ее записать в частном под уголок. 265-265=0. Деление выполнено без остатка.

Значение частного чисел 265 и 53 равно 5.

Иногда при делении пробная цифра частного не подходит, и тогда ее нужно менять.

В частном будет однозначное число. 

Чтобы было легче подобрать цифру частного, разделим 184 не на 23, а на 20. Для этого разделим 184 на 10, будет 18 (остаток 4). И 18 разделим на 2, будет 9. 9 – это пробная цифра, мы ее сразу писать в частном не будем, а проверим, подойдет ли она. Умножим 23*9=207. 207 больше, чем 184. Мы видим, что цифра 9 не подходит. В частном будет меньше 9. Попробуем, подойдет ли цифра 8. Умножим 23*8=184. Мы видим, что цифра 8 подходит. Можем ее записать в частном. 184-184=0. Деление выполнено без остатка.

Значение частного чисел 184 и 23 равно 8.

Рассмотрим более сложные случаи деления.

Первое неполное делимое – 76 десятков. Значит, в частном будут 2 цифры.

Определим первую цифру частного. Разделим 76 на 24. Чтобы легче было подобрать цифру частного, разделим 76 не на 24, а на 20. То есть нужно 76 разделить на 10, будет 7 (остаток 6). И 7 разделим на 2, получится 3 (остаток 1). 3 – это пробная цифра частного. Сначала проверим, подойдет ли она. Умножим 24*3=72 . 76-72=4. Остаток меньше делителя. Значит, цифра 3 подошла и теперь мы ее можем записать на месте десятков частного. 72 пишем под первым неполным делимым, между ними ставим знак минус, под чертой записываем остаток.

Продолжим деление. Перепишем в строку с остатком цифру 8, следующую за первым неполным делимым. Получим следующее неполное делимое – 48 единиц. Разделим 48 на 24. Чтобы было легче подобрать цифру частного, разделим 48 не на 24, а на 20. То есть разделим 48 на 10, будет 4 (остаток 8). И 4 разделим на 2, будет 2. Это пробная цифра частного. Мы должны сначала проверить, подойдет ли она. Умножим 24*2=48. Мы видим, что цифра 2 подошла и, значит, можем ее записать на месте единиц частного. 48-48=0, деление выполнено без остатка.

 Значение частного чисел 768 и 24 равно 32.

Первое неполное делимое – 153 сотни, значит, в частном будут три цифры.

Определим первую цифру частного. Разделим 153 на 56. Чтобы легче было подобрать цифру частного, разделим 153 не на 56, а на 50. Для этого разделим 153 на 10, будет 15 (остаток 3). И 15 разделим на 5, будет 3. 3 – это пробная цифра частного. Помните: ее нельзя сразу записывать в частном, а нужно сначала проверить, подойдет ли она. Умножим 56*3=168. 168 больше, чем 153. Значит, в частном будет меньше, чем 3. Проверим, подойдет ли цифра 2. Умножим 56*2=112. 153-112=41. Остаток меньше делителя, значит, цифра 2 подходит, ее можно записать на месте сотен в частном.

Образуем следующее неполное делимое. 153-112=41. Переписываем в ту же строку цифру 4, следующую за первым неполным делимым. Получаем второе неполное делимое  414 десятков. Разделим 414 на 56. Чтобы удобнее было подобрать цифру частного, разделим 414 не на 56, а на 50. 414:10=41(ост.4). 41:5=8(ост.1). Помните: 8 – это пробная цифра. Проверим ее. 56*8=448. 448 больше, чем 414, значит, в частном будет меньше, чем 8. Проверим, подойдет ли цифра 7. Умножим 56 на 7, получится 392. 414-392=22. Остаток меньше делителя. Значит, цифра подошла и в частном на месте десятков можем записать 7.

Пишем в строку с новым остатком 4 единицы. Значит следующее неполное делимое – 224 единицы. Продолжим деление. Разделим 224 на 56. Чтобы легче было подобрать цифру частного, разделим 224 на 50. То есть сначала на 10, будет 22 (остаток 4). И 22 разделим на 5, будет 4 (остаток 2). 4 – это пробная цифра, проверим ее, подойдет ли она. 56*4=224. И мы видим, что цифра подошла. Запишем 4 на месте единиц в частном. 224-224=0, деление выполнено без остатка.

Значение частного чисел 15344 и 56 равно 274.

Свойства деления

Деление во многом схоже с умножением, поэтому на деление действует правило знаков, свойственное умножению.

Правило гласит:

  • При делении отрицательного числа на отрицательное или положительного числа на положительное, получается положительное число
  • При делении отрицательного числа на положительное или положительного числа на отрицательное, получается отрицательное число.

Внимательно следите за выполнением этого правила, чтобы не допускать ошибок из-за не поставленного минуса.

К тому же, нельзя забывать, что действительные числа нельзя делить на ноль и бесконечность

Обратите внимание, речь идет только о действительных числах, для других категорий можно прибегать к различным хитростям

Кроме того, на деление распространяются некоторые свойства умножения, а вернее одно свойство- распределительное.

Деление с нулем в частном

Иногда в частном одним из чисел получается 0, и дети зачастую пропускают его, отсюда неправильное решение. Разберем, откуда может взяться 0 и как его не забыть.

Первое неполное делимое — 28 сотен. Значит в частном будет 3 цифры. Ставим под уголок три точки. Это важный момент. Если ребенок потеряет ноль, останется лишняя точка, которая заставит задуматься, что где-то упущена цифра.

Определим первую цифру частного. Разделим 28 на 14. Подбором получается 2. Проверим, подойдет ли цифра 2. Умножим 14*2=28. Цифра 2 подходит, ее можно записать на месте сотен в частном. 28-28=0.

Получился нулевой остаток. Мы обозначили его розовым для наглядности, но записывать его не нужно. Переписываем в строку с остатком цифру 7 из делимого. Но 7 не делится на 14 с получением целого числа, поэтому записываем на месте десятков в частном 0.

Теперь переписываем в ту же строку последнюю цифру делимого (количество единиц).

70:14=5 Записываем вместо последней точки в частном цифру 5. 70-70=0. Остатка нет.

Значение частного чисел 2870 и 14 равно 205.

Деление нужно непременно проверить умножением.

Деление двузначного числа на однозначное

Ребята, вы меня узнали? Люблю наряжаться на маскарад. Вот прицепил такие усы, думал, что буду похож на фокусника. Чудеса начинаются.

Такие задания называют примерами с «усиками». Да, да, но усики носят не люди, кто делит, а сами примеры. Рисовать их нужно простым карандашом, а когда научитесь быстро считать, то просто представляйте в голове.

Устное деление двузначного на однозначное

Задание 1.

Пусть надо решить, сколько будет

К «усикам» запишем такие два слагаемых, которые делятся на 8, а в сумме дают 96.

Самое главное — это не ошибиться в подборе первого «усика». Надо запомнить, что он всегда больше, чем второй. Ищем его, умножая 8 на 10. Если не подойдет, то будем умножать на 20, на 30. Главное, чтобы было круглое число.

Все понятно? Будем тренироваться.

Задание 2.

Задание 3.

Попробуем разделить 90 на два. «Первый усик» явно не 20, тогда второй будет 70. Знаем, что «второй усик» не может быть больше первого.

Вижу, что не 60, потому что 30 разделить на два — это не табличный случай.

Следовательно, 2 ∙ 40 = 80. Значит «первый усик» предположительно 80. «Второй усик» тогда найдем вычитанием: 90 – 80 = 10. Десять разделить на два, это таблица.

Как думаете, вы справитесь с делением? Когда встречаете случаи, где двузначное число делится на однозначное, и примеры не относятся к таблице умножения, то решайте подбором «усиков». Разбивайте делимое на подходящие слагаемые. Их можно записать суммой в скобочках, а при делении использовать правило деления суммы на число.

Решите задачу.

Таня выполнила 96 примеров, а Коля в 4 раза меньше. Сколько примеров решил Коля?

Чтобы ответить на вопрос задачи, надо выполнить действие деления.

96 : 4 =

«Усиками» будут 80 и 16, получается сумма 80 + 16. Значит, каждое из этих слагаемых разделите на 4, а частные сложите.

Ответ: 24

Этап пройден. Вот вам синяя лента в награду.

Деление столбиком двузначное на однозначное

Письменное деление уголком просто невозможно усвоить без блестящего знания таблицы умножения. Это просто трата времени и нервов. В древности в римских школах ее заучивали хором на распев. Знаете ответы на «отлично», тогда переходите на примеры деления в столбик.

Задание 1.

Пусть надо 84 разделить на три. Посмотрите на запись. Такой значок означает деление уголком. Уголок имеет наверху делитель, на который делим. Под чертой — результат, который ищем. Он называется частным.

Нам надо узнать, чему равно частное. Но прежде определим, сколько цифр будет в результате. Это очень важный шаг, поэтому упускать его нельзя. Как мы будем это делать? Посмотрите на первую цифру. Это восьмерка. Восемь больше трех. Значит, она может дать нам полноценную цифру в частном. Ставим точку. После восьмерки еще одна цифра, это значит, что частное — двузначное число. Под чертой в уголке карандашом поставьте вторую точку.

Первое неполное делимое — восьмерка. Начинаем ее делить на три, ищем табличный случай. Легче всего уменьшать 8 на единицу.

8 – 1 = 7. В таблице нет деления семи на три.

Уменьшаем еще на 1.

7 – 1 = 6. Шесть делится на три, получается — по два. Записываем 2 в частное под чертой.

Теперь мы должны понять, сколько не разделили. Ведь разделили всего шесть.

А надо было разделить восемь.

Два осталось неразделенным. Это остаток. Он должен быть меньше делителя.

Давайте проверим: два меньше трех.

Да, действительно. Мы сделали все правильно. Этот шаг очень важен. Не забывайте сравнивать остаток с делителем.

После этого сносим следующую цифру с тем, чтобы получить новое неполное делимое

Обратите внимание: нужно писать каждую цифру в своей клетке. Получается неполное делимое 24

Ответ: 28.

Задание 2.

Решите пример столбиком 96 : 4 =

Проверьте:

Ребята, вы молодцы. Ловите последнюю награду — фиолетовую шелковую полоску.

Ура! Наш математический маршрут пройден. Знания-сокровища из цветных лент превратились в волшебную радугу. Что же у нас вышло, что мы унесем в нашем сундуке. Закончите предложения:

Деление на двузначное число с остатком

Действует ли при делении с остатком какой-либо другой алгоритм? Нет! При делении с остатком рассуждают точно так же, как и при делении без остатка.

Ребята, какое правило нужно знать и обязательно проверять при делении с остатком?

А теперь решите самостоятельно примеры на деление с остатком. Не забывайте сравнивать остаток с делителем, сделайте проверку.

272 : 98    495 : 46    385 : 65   321 : 47

Проверь себя.

Ребята, в каком примере вы встретили затруднение? Рассмотрим вместе пример

495 : 46

Почему в частном появился 0 (нуль)?

Первое неполное делимое 49. Делим на 46. Берем по 1. Остаток 3 меньше делителя 46. Делим верно. Сносим следующую цифру 5.

35 делим на  46. Берем по 0 (35 меньше, чем 46).  Остаток 35 меньше делителя, разделили верно. Сделаем проверку, убедимся в правильности вычислений.

Уметь делить с остатком – полезный навык, который не раз поможет вам в решении практических задач. Например, для постройки одинаковых башен у вас имеется 430 деталей лего-конструктора. Сколько башен можно построить, если на каждую нужно 35 деталей? Останутся ли лишние детали?

Давайте вместе решим эту задачу.

430 разделим на 35. Сделаем это столбиком (уголком).

Мы видим, что при делении получился остаток 10. Делаем вывод: из 430 деталей лего-конструктора можно сделать 12 одинаковых башен и еще 10 деталей останется.

Разделить можно на черновике, а решение в тетради записать в строчку.

430 : 35 = 12 (ост.10) – башен можно сделать.

Ответ: 12 башен и 10 деталей останется.

Если вы хорошо умеете делить с остатком, решение можно сразу записать в тетрадь:

Решите самостоятельно практическую задачу.

Задача

Ребята 4 класса изготовили для первоклассников 126 закладок в учебники. Сколько закладок достанется каждому первокласснику, если в первом классе 25 учеников? Останутся ли лишние закладки?

Проверь себя.

Общий принцип деления в столбик

Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.

Решим пример \(\textcolor{red} {295383\div 34}\).

Далее записываем известные
компоненты деления следующим образом:

и начинаем вычисление:

1. Берем первое неполное делимое и пытаемся его разделить на делитель.

Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.

Записываем в частное первую найденную цифру
разряда тысяч, а под неполным делимым пишем результат произведения неполного
частного и делителя. И сразу же находим остаток от этого действия, т.е.
вычитаем из неполного частного результат этого произведения.

В результате умножения первой найденной цифры частного на делитель у нас получилось \(\textcolor{red} {8\cdot 37=272}\). Записываем его под 295 и находим разницу: \(\textcolor{red} {295-272=23}\). Значит, 23 тысячи у нас остаются неразделенными.

В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.

2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.

Находим результат деления второго неполного делимого на делитель. 233 сотни разделить на 34 будет 6 сотен. Значит, в разряде сотен частного будет цифра 6. Умножаем ее на делитель 34, получаем 204 и еще 29 сотен неразделенных.

3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.

При делении второго неполного делимого 298 десятков на делитель 34 получается 8 десятков, и еще 26 десятков неразделенных (как и в предыдущих действиях, я умножил 8 на 34 и результат отнял от 298). Поэтому, в частном, в разряде десятков записываем цифру 8.

4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.

Разделив 263 единицы на 34, получаем 7 полных единиц и 25 неразделенных. Записав в частном последнюю цифру разряда единиц, получаем окончательный ответ действия \(\textcolor{red} {295383\div 34=8687}\) и 25 в остатке.

Рассмотрим еще один пример. \(\textcolor{red} {25326\div 63}\).

Первое неполное делимое будет 253 сотни, количество цифр в частном – 3.

Делим 253 сотни на 63, получается 4 полных сотни и неразделенная 1 сотня в остатке.

1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.

Но 12 не делится нацело на 63 части, то есть, нет ни одного целого десятка в каждой части. Значит, мы в частном в разряде десятков должны записать , поскольку все 12 десятков оказались неразделенными. А к этим 12 десяткам (т.е. 120 сотням) добавить (снести) 6 единиц делимого.

Итак, запомните, что
каждое неполное делимое образует в частном одну цифру соответствующего разряда
и что даже если неполное делимое меньше делителя, то в частном все равно нужно
записать нулевой результат этого действия.

126 единиц делим на 63, получается 2 единицы без остатка. Теперь мы можем записать окончательный ответ деления \(\textcolor{red} {25326\div 63=402}\).

Итак, в общем виде алгоритм деления в столбик выглядит так:1. Находим первое неполное делимое и количество цифр в частном.2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.4. Ставим между ними знак минус и выполняем действие.5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.7. Если неполное делимое невозможно разделить на делитель, то в частном ставится и к этому неполному делимому сносится следующая цифра.

Проверочные работы по математике на тему “Умножение и деление многозначных чисел”(4 класс)

Самостоятельная работа по теме: «Умножение и деление на двузначное число»

4 класс, 3 четверть

вариант I

  1. Решите пример на деление:

336 : 3 = 138 : 46 =

750 : 50 = 640 : 80 =

  1. Решите пример на умножение:

132 * 59 = 631 * 60 =

72 * 20 = 86 * 26 =

  1. Решите задачу:

На склад поступило 2 тонны 640 кг муки. Затем 13 мешков по 48 кг в каждом отдали в производство. Сколько муки осталось на складе?

  1. Решите задачу:

Из точки А и точки В на встречу друг другу одновременно выехали 2 велосипедиста. Расстояние между точками равно 200 км. Они встретились через 5 часов. С какой скоростью двигался первый велосипедист, если скорость второго была равна 18 км/час?

  1. Найдите значение выражений:

32 568 – (2 832 * 7 + 3 202 : 2) = (1652 * 7 – 237 : 3) – 238 =

вариант II

1. Решите пример на деление:

350 : 50 = 230 : 46 =

483 : 3 = 320 : 80 =

2. Решите пример на умножение:

47 * 30 = 312 * 61 =

245 * 30 = 48 * 27 =

3. Решите задачу:

На склад в магазин привезли 2830 кг сахара. Каждый день продавали по 68 кг. Сколько сахара осталось на складе после 23 дней?

4. Решите задачу:

Из двух населенных пунктов на встречу друг другу вышли 2 путника. Расстояние между населенными пунктами равно 84 км. Они встретились через 6 часов. С какой скоростью шел первый путник, если скорость второго была равна 8 км/час?

5. Найдите значение выражений:

18 345 – (5 358 * 2 + 3 208 : 2 ) = (6 785 * 3 – 8 120 : 4) – 2 458 =

вариант III

1. Решите пример на деление:

276 : 46 = 840 : 40 =

453 : 3 = 990 : 30 =

2. Решите пример на умножение:

186 * 35 = 23 * 80 =

43 * 50 = 134 * 70 =

3. Решите задачу:

В цех привезли 3 654 заготовки. В токарный цех каждый день направляют по 37 деталей. Сколько деталей осталось в цеху через 40 дней?

4. Решите задачу:

Из двух городов на встречу друг другу выехали 2 мотоциклиста. Расстояние между городами равно 840 км. Они встретились через 7 часов. С какой скоростью ехал первый мотоциклист, если скорость второго была равна 70 км/час?

5. Найдите значение выражений:

29 235 – (3 984 * 6 + 6 788 : 2 ) = (8 102 – 246 : 3) – 315 * 4 =

Самостоятельная работа по теме: «Умножение и деление на трёхзначное число»

4 класс, 4 четверть

вариант I

1. Выполните деление:

31 901 : 73 = 33 387 : 93 =

309 888 : 384 = 127 270 : 143 =

2. Выполните умножение:

213 * 307 = 836 * 167 =

589 * 372 = 430 * 132 =

3. Переведите:

5 часов 13 минут = … сек 1 тонн 3 центнеров 68 кг = … кг

1 км 43 метра = … дм 28 часов 42 мин = … мин

4. Решите задачу:

Отряд пионеров прошел 20 км. Это составляет четверть пути. Сколько должны пройти пионеры?

вариант II

1. Выполните деление:

25 296 : 68 = 6 279 : 13 =

111 948 : 114 = 173 990 : 274 =

2. Выполните умножение:

248 * 357 = 721 * 163 =

701 * 591 = 231 * 694 =

3. Переведите:

1 час 48 минут = … сек 4 тонн 8 центнеров 213 кг = … кг

2 км 483 метров = … дм 1 сутки 8 часов = … мин

4. Решите задачу:

Спортсмены пробежали 15 км. Это составляет треть пути. Сколько должны пробежать спортсмены?

вариант III

1. Выполните деление:

218 654 : 218 = 716 982 : 794 =

99 264 : 132 = 54 544 : 487 =

2. Выполните умножение:

478 * 306 = 404 * 715 =

213 * 372 = 397 * 702 =

3. Переведите:

3 часа 38 минут = … сек 13 тонн 7 центнеров 63 кг = … кг

16 км = … дм 4 часов 37 мин = … мин

4. Решите задачу:

Велосипедисты проехали 18 км. Это составляет пятую часть пути. Сколько должны проехать велосипедисты?

Самостоятельная работа по теме: « Итоговое повторение»

4 класс, 4 четверть

вариант I

1. Решите пример:

3 758 + 6 345 = 27 397 – 7 164 =

782 * 23 = 33 948 : 82 =

2. Найдите значения выражений:

3 000 : 60 – 250 : 50 =

( 213 173 – 19 403 ) : 2 – 31 * 73 =

3. Решите задачу:

Из пункта А одновременно в одном направлении выехали мотоциклист и велосипедист. Скорость мотоциклиста 72 км/час, а велосипедиста 25 км/час. Какое расстояние будет между ними через 3 часа?

вариант II

1. Решите пример:

7 165 + 18 448 = 55 103 – 731 =

694 * 36 = 18 144 : 567 =

2. Найдите значения выражений:

5 600 : 70 + 210 : 70 =

( 14 864 – 3 486 ) : 2 – 19 * 26 =

3. Решите задачу:

Из двух населенных пунктов одновременно навстречу друг другу выехали поезд и автомобиль. Скорость поезда 48 км/час, а автомобиля 72 км/час. Через какое время они встретятся, если расстояние между городами 360 км?

вариант III

1. Решите пример:

4 138 + 12 672 = 63 230 – 879 =

736 * 34 = 35 805 : 35 =

2. Найдите значения выражений:

4 200 : 60 – 490 : 70 =

( 114 378 – 21 366 ) : 2 – 31 * 72 =

3. Решите задачу:

Из одного города одновременно в разных направлениях выехали мотоциклист и велосипедист. Скорость автомобиля 65 км/час, а велосипедиста 25 км/час. Какое расстояние будет между ними через 3 часа?

Скачать карточки

В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, с нулями, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.

Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем и правил в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.

Понравился наш контент? Подпишитесь на канал в .

Как делить в столбик с остатком?

Завершающим этапом уроков на закрепление навыка деления будет решение заданий с остатком. Они обязательно встретятся в решебнике для 3–4-го класса. В гимназиях с математическим уклоном школьники изучают не только неполные числа, но и десятичные дроби. Форма записи примера уголком останется прежней, отличаться будет только ответ.

Примеры на деление с остатком берите несложные, можно преобразовывать уже решенные задания с целым числом в ответе, прибавляя к делимому единицу. Это очень удобно для ребенка, он сразу увидит, чем примеры похожи и чем отличаются.

Урок может выглядеть так:

  1. Расскажите ученику третьего класса, что не все цифры можно поделить поровну. Для иллюстрации понятия возьмите натуральное число до 10. Например, попробуйте вместе разделить 9 на 2. Форма записи решения столбиком получится такой:
  2. Объясните школьнику, что остатком считается последнее число для деления, которое меньше делителя. Конец записи будет таким: 9:2=4 (1 — остаток).

Деление с остатком

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375

слайд из презентации о делении чисел с остатком

Запишите его в ответе либо:

  • как дробь, где в числителе остаток, а в знаменателе — делитель
  • словами, например, 73 целых и 6 в остатке
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector