3 класс: деление с остатком, примеры и пояснения

Пример с умножением

Одна из самых трудных тем, с которой сталкивается 3 класс, — деление с остатком. Примеры могут быть сложными, особенно когда требуются дополнительные расчеты, записываемые в столбик.

Допустим, необходимо разделить число 190 на 27 с получением минимального остатка. Попробуем решить задачу, пользуясь умножением.

Подберем число, которое при умножении будет давать цифру, максимально приближенную к числу 190. Если умножить 27 на 6, получим цифру 162. Вычтем из 190 число 162, остаток будет 28. Он получился больше, чем исходный делитель. Следовательно, число шесть не подходит для нашего примера в качестве множителя. Продолжим решение примера, взяв для умножения число 7.

Умножая 27 на 7, мы получим произведение 189. Далее проведем проверку правильности решения, для этого вычтем из 190 полученный результат, то есть отнимем число 189. Остатком будет 1, что явно меньше 27. Именно так решаются сложные выражения в школе (3 класс, деление с остатком). Примеры всегда предусматривают запись ответа. Все математическое выражение можно оформить так: 190:27=7 (остаток 1). Подобные вычисления можно производить и в столбик.

Именно так осуществляет 3 класс деление с остатком. Примеры, приведенные выше, помогут разобраться в алгоритме решения подобных задач.

Обобщения

Вещественные числа

Если два числа a{\displaystyle a} и b{\displaystyle b} (отличное от нуля) относятся к множеству вещественных чисел, a{\displaystyle a} может быть поделено на b{\displaystyle b} без остатка, и при этом частное также является вещественным числом. Если же частное по условию должно быть целым числом, в этом случае остаток будет вещественным числом, то есть может оказаться дробным.

Формально:

если a,b∈R,b≠{\displaystyle a,b\in \mathbb {R} ,b\neq 0}, то a=bq+r{\displaystyle a=bq+r}, где ⩽r<|b|{\displaystyle 0\leqslant r<|b|}
Пример

Деление 7,9 на 2,1 с остатком даёт:

⌊7,92,1⌋=3{\displaystyle \left\lfloor {\frac {7{,}9}{2{,}1}}\right\rfloor =3} (неполное частное)
7,9−3⋅2,1=1,6{\displaystyle 7{,}9-3\cdot 2{,}1=1{,}6} (остаток)

Гауссовы целые числа

Гауссово число — это комплексное число вида a+bi{\displaystyle a+bi}, где a,b{\displaystyle a,b} — целые числа. Для них можно определить деление с остатком: любое гауссово число u{\displaystyle u} можно разделить с остатком на любое ненулевое гауссово число v{\displaystyle v}, то есть представить в виде:

u=vq+r{\displaystyle u=vq+r}

где частное q{\displaystyle q} и остаток r{\displaystyle r} — гауссовы числа, причём |r|<|v|.{\displaystyle |r|<|v|.}
Однако, в отличие от целых чисел, остаток от деления определяется неоднозначно. Например, 7+2i{\displaystyle 7+2i} можно разделить на 3−i{\displaystyle 3-i} тремя способами:

7+2i=(3−i)(2+i)+i=(3−i)(1+i)+3=(3−i)(2+2i)+(−1−2i){\displaystyle 7+2i=(3-i)(2+i)+i=(3-i)(1+i)+3=(3-i)(2+2i)+(-1-2i)}

Многочлены

При делении с остатком двух многочленов f(x){\displaystyle f(x)} и g(x){\displaystyle g(x)} для однозначности результата вводится условие: степень многочлена-остатка должна быть строго меньше степени делителя:

f(x)=q(x)g(x)+r(x){\displaystyle f(x)=q(x)g(x)+r(x)\quad }, причём deg⁡(r)<deg⁡(g).{\displaystyle \quad \deg(r)<\deg(g).}
Пример
2×2+4x+5x+1=2x+2{\displaystyle {\frac {2x^{2}+4x+5}{x+1}}=2x+2} (остаток 3), так как 2x² + 4x + 5 = (x + 1)(2x + 2) + 3

В программировании

Операция вычисления неполного частного и остатка в различных языках программирования
Язык Неполноечастное Остаток Знак остатка
ActionScript Делимое
Ada Делитель
Делимое
Бейсик Не определено
Си (ISO 1990) Не определено
Си (ISO 1999) Делимое
C++ (ISO 2003) Не определено
C++ (ISO 2011) Делимое
C# Делимое
ColdFusion Делимое
Common Lisp Делитель
Делимое
D Делимое
Delphi Делимое
Eiffel Делимое
Erlang Делимое
Euphoria Делимое
Microsoft Excel (англ.) Делитель
Microsoft Excel (рус.)
FileMaker Делитель
Fortran Делимое
Делитель
GML (Game Maker) Делимое
Go Делимое
Haskell Делитель
Делимое
J Делитель
Java Делимое
Делитель (1.8+)
JavaScript Делимое
Lua Делитель
Mathematica Делитель
MATLAB Делитель
Делимое
MySQL Делимое
Oberon +, если делитель >0
Objective Caml Не определено
Pascal Делимое
Perl Нет Делитель
PHP Нет Делимое
PL/I Делитель (ANSI PL/I)
Prolog (ISO 1995) Делитель
PureBasic Делимое
Python Делитель
QBasic Делимое
R Делитель
RPG Делимое
Ruby Делитель
Scheme Делитель
SenseTalk Делитель
Делимое
Tcl Делитель
Verilog (2001) Делимое
VHDL Делитель
Делимое
Visual Basic Делимое

Нахождение остатка от деления часто используется в компьютерной технике и телекоммуникационном оборудовании для создания контрольных чисел и получении случайных чисел в ограниченном диапазоне, например в конгруэнтном генераторе случайных чисел.

Обозначения операции взятия остатка в различных языках программирования представлены в таблице справа.
Например, в Паскале операция вычисляет остаток от деления, а операция осуществляет целочисленное деление, при котором остаток от деления отбрасывается:

78 mod 33 = 12
78 div 33 = 2

Знак остатка

Важно отметить, что операция взятия остатка в языках программирования может возвращать отрицательный результат (для отрицательного делимого или делителя). Тут есть два варианта:

  • Знак остатка совпадает со знаком делимого: неполное частное округляет к нулю.
  • Знак остатка совпадает со знаком делителя: неполное частное округляет к −∞.

Если в языке есть оба типа остатков, каждому из них соответствует своя операция неполного частного. Обе операции имеют жизненный смысл.

  • Есть сумма n копеек, положительная или отрицательная. Перевести её в рубли и копейки. — и . Знак остатка совпадает со знаком делимого.
  • Есть бесконечное клеточное поле, каждая клетка — 16×16 пикселей. В какую клетку попадает точка (x, y), и каковы координаты относительно верхнего левого угла клетки? — и соответственно. Знак остатка совпадает со знаком делителя.

Как запрограммировать, если такой операции нет?

Неполное частное можно вычислить через деление и взятие целой части: q=ab{\displaystyle q=\left} (, в зависимости от задачи, может быть «полом» или усечением). Однако деление здесь получается дробное, которое намного медленнее целого. Такой алгоритм используется в языках, в которых нет целых типов (отдельные электронные таблицы, программируемые калькуляторы и математические программы), а также в скриптовых языках, в которых издержки интерпретации намного превышают издержки дробной арифметики (Perl, PHP).

При отсутствии команды остаток программируется как a−qb{\displaystyle a-qb}.

Если b положительно, а знак r совпадает со знаком делимого, не определён или неизвестен, для нахождения минимального неотрицательного остатка можно воспользоваться формулой r′=(b+(amod⁡b))mod⁡b{\displaystyle r’=(b+(a\operatorname {mod} b))\operatorname {mod} b}.

Примечания

  1. Потапов М. К., Александров В. В., Пасиченко П. И. Алгебра и анализ элементарных функций. М.: Наука, 1981, 560 с., С. 9.
  2. ISO/IEC 9899:TC2: When integers are divided, the result of the operator is the algebraic quotient with any fractional part discarded. ; в списке изменений 1999→TC1 и TC1→TC2 данное изменение не числится.
  3. ISO/IEC 14882:2003 : Programming languages — C++, 5.6.4: International Organization for Standardization, International Electrotechnical Commission, 2003. «the binary % operator yields the remainder from the division of the first expression by the second. …. If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined».
  4. N3242=11-0012 (Working draft), текст совпадает с C99
  5. К. Арнолд, Дж. Гослинг, Д. Холмс. Язык программирования Java. — 3-е изд. — М., СПб., Киев: Вильямс, 2001. — С. 173—174. — ISBN 5-8459-0215-0.
  6. Стандарт 1973 года: div — division with truncation.

Заключение

Для того чтобы у учеников начальных классов были сформированы правильные вычислительные навыки, педагог во время проведения занятий по математике обязан уделять внимание пояснению алгоритма действий ребенка при решении заданий на деление с остатком. По новым федеральным государственным образовательным стандартам особое внимание уделяется индивидуальному подходу к обучению

Учитель должен подбирать задания для каждого ребенка с учетом его индивидуальных способностей. На каждой ступени обучения правилам деления с остатком педагог должен осуществлять промежуточный контроль. Он позволяет ему выявлять основные проблемы, возникающие с усвоением материала у каждого ученика, своевременно проводить коррекцию знаний и навыков, устранять появляющиеся проблемы, получать желаемый результат.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector