Вычитание двузначных, трехзначных и многозначных чисел столбиком

Содержание:

Деление на двузначное число с остатком

Действует ли при делении с остатком какой-либо другой алгоритм? Нет! При делении с остатком рассуждают точно так же, как и при делении без остатка.

Ребята, какое правило нужно знать и обязательно проверять при делении с остатком?

А теперь решите самостоятельно примеры на деление с остатком. Не забывайте сравнивать остаток с делителем, сделайте проверку.

272 : 98    495 : 46    385 : 65   321 : 47

Проверь себя.

Ребята, в каком примере вы встретили затруднение? Рассмотрим вместе пример

495 : 46

Почему в частном появился 0 (нуль)?

Первое неполное делимое 49. Делим на 46. Берем по 1. Остаток 3 меньше делителя 46. Делим верно. Сносим следующую цифру 5.

35 делим на  46. Берем по 0 (35 меньше, чем 46).  Остаток 35 меньше делителя, разделили верно. Сделаем проверку, убедимся в правильности вычислений.

Уметь делить с остатком – полезный навык, который не раз поможет вам в решении практических задач. Например, для постройки одинаковых башен у вас имеется 430 деталей лего-конструктора. Сколько башен можно построить, если на каждую нужно 35 деталей? Останутся ли лишние детали?

Давайте вместе решим эту задачу.

430 разделим на 35. Сделаем это столбиком (уголком).

Мы видим, что при делении получился остаток 10. Делаем вывод: из 430 деталей лего-конструктора можно сделать 12 одинаковых башен и еще 10 деталей останется.

Разделить можно на черновике, а решение в тетради записать в строчку.

430 : 35 = 12 (ост.10) – башен можно сделать.

Ответ: 12 башен и 10 деталей останется.

Если вы хорошо умеете делить с остатком, решение можно сразу записать в тетрадь:

Решите самостоятельно практическую задачу.

Задача

Ребята 4 класса изготовили для первоклассников 126 закладок в учебники. Сколько закладок достанется каждому первокласснику, если в первом классе 25 учеников? Останутся ли лишние закладки?

Проверь себя.

Как приготовить чурек?

Чурек рецепт приготовления

Он отлично заменит хлеб, а по внешнему виду напоминает обычный толстый лаваш. Выпекается чурек не более 25 минут.

В самом конце посыпьте его кунжутом или маком, но перед этим смажьте яйцом. Чтобы чурек не подгорел можно на низ положить фольгу. Дайте тесту немного “дойти” на форме и затем можете ножом сделать надрезы в виде ромбов.

Чтобы края были одинаковыми, постарайтесь придать им форму руками, после чего отправьте на противень. Раскатывается тесто очень легко скалкой.

Придайте ем форму шара и оставьте в емкости с высокими бортами в теплом месте подходить. Оно должно получиться эластичным и не прилипать к рукам. Чтобы удобнее и лучше вымесить, я выложила тесто на доску, присыпанную мукой.

Тесто замешивается около 15 минут. Итак, чтобы приготовить чурек в домашних условиях, для начала сделайте дрожжевое тесто: разведите дрожжи в теплой воде, добавьте соль и муку.

100vkusov.ru

Калькулятор вычитания столбиком

Данный калькулятор поможет вам выполнить вычитание чисел столбиком. Просто введите уменьшаемое и вычитаемое и нажмите кнопку Вычислить .

Существует удобный метод нахождения разности двух натуральных чисел – вычитание в столбик, или вычитание столбиком. Этот способ берет свое название от метода записи уменьшаемого и разности друг под другом. Так можно провести и основные, и промежуточные вычисления в соответствии с нужными разрядами чисел.

Этим методом удобно пользоваться, поскольку это очень просто, быстро и наглядно. Все сложные на первый взгляд подсчеты можно свести к сложению и вычитанию простых чисел.

Ниже мы рассмотрим, как именно пользоваться этим методом. Наши рассуждения будут подкреплены примерами для большей наглядности.

Задание по математике для 3 класса — «Вычитание столбиком»

Лимит времени:

из 10 заданий окончено

Вопросы:

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

Информация

Выполните задание онлайн олимпиады и узнайте результат.
Для зарегистрированных участников, результаты отправляются на электронную почту.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается…

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Правильных ответов: из 10

Ваше время:

Время вышло

Вы набрали из баллов ()

Средний результат  

Ваш результат  

Рубрики

  1. Математика
    0%
  • Поздравляем! Вы отлично справились с заданием.Ваш результат соответствует 1 месту.

  • Поздравляем! Вы хорошо справились с заданием.Ваш результат соответствует 2 месту.

  • Поздравляем! Вы выполнили задние допустив незначительное количество ошибок.
    Ваш результат соответствует 3 месту.

  • Сделайте работу над ошибками.
    Попробуйте пройти тестирование еще раз и добиться хорошего результата.
    Ваш результат может стать значительно лучше.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  1. С ответом

  2. С отметкой о просмотре

  1. Задание 1 из 10

    Количество баллов: 1

    Переносом числа влево по числовой прямой называют…

    • Вычитание

    • Сложение

    • Умножение

    • Деление

  2. Задание 2 из 10

    Количество баллов: 1

    В результате вычитания могут получаться следующие числа:

    • Отрицательные

    • Ноль

    • Положительные

    • Все ответы верны

  3. Задание 3 из 10

    Количество баллов: 1

    Как правильно записать числа для вычитания столбиком?

    • В соответствии с из разрядностью

    • Так, чтобы под первым верхним числом всегда было другое число

    • Так, чтобы под последним верхним числом всегда было другое число

    • Нет верного ответа

  4. Задание 4 из 10

    Количество баллов: 1

    Можно ли из единиц уменьшаемого вычитать десятки вычитаемого?

    • Да

    • Нет

    • Зависит от ситуации

    • Нет верного ответа

  5. Задание 5 из 10

    Количество баллов: 1

    Можно ли «занимать» десятки для единиц у уменьшаемого для вычитания?

    • Да

    • Нет

    • Зависит от ситуации

    • Нет верного ответа

  6. Задание 6 из 10

    Количество баллов: 1

    Как называется операция займа у следующих разрядов?

    • Сложение в столбик с переходом через десяток

    • Вычитания в столбик с переходом через второй десяток

    • Вычитания в столбик с переходом через десяток

    • Нет верного ответа

  7. Задание 7 из 10

    Количество баллов: 1

    Занимать можно только у десятков, или и у других разрядов также?

    • Только у десятков

    • Можно у любого разряда

    • Можно только до тысяч

    • Нет верного ответа

  8. Задание 8 из 10

    Количество баллов: 1

    При вычитании в столбик отрицательного числа из положительного получается?

    • Умножение

    • Вычитание

    • Сложение

    • Нет верного ответа

  9. Задание 9 из 10

    Количество баллов: 1

    Что получится при вычитании 473947-78963 = ?

    • 94984

    • 394984

    • -394984

    • Нет верного ответа

  10. Задание 10 из 10

Как делить в столбик с остатком?

Завершающим этапом уроков на закрепление навыка деления будет решение заданий с остатком. Они обязательно встретятся в решебнике для 3–4-го класса. В гимназиях с математическим уклоном школьники изучают не только неполные числа, но и десятичные дроби. Форма записи примера уголком останется прежней, отличаться будет только ответ.

Примеры на деление с остатком берите несложные, можно преобразовывать уже решенные задания с целым числом в ответе, прибавляя к делимому единицу. Это очень удобно для ребенка, он сразу увидит, чем примеры похожи и чем отличаются.

Урок может выглядеть так:

  1. Расскажите ученику третьего класса, что не все цифры можно поделить поровну. Для иллюстрации понятия возьмите натуральное число до 10. Например, попробуйте вместе разделить 9 на 2. Форма записи решения столбиком получится такой:
  2. Объясните школьнику, что остатком считается последнее число для деления, которое меньше делителя. Конец записи будет таким: 9:2=4 (1 — остаток).

Деление с остатком

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375

слайд из презентации о делении чисел с остатком

Запишите его в ответе либо:

  • как дробь, где в числителе остаток, а в знаменателе — делитель
  • словами, например, 73 целых и 6 в остатке

Сложение двух чисел в столбик: что нужно знать?

Прежде чем мы перейдем непосредственно к операции сложения в столбик, рассмотрим некоторые важные моменты. Для быстрого освоения материала желательно:

  1. Знать и хорошо ориентироваться в таблице сложения. Так, при проведении промежуточных вычислений, вам не придется тратить время и постоянно обращаться к таблице сложения.
  2. Помнить свойства сложения натуральных чисел. Особенно свойства, связанные со сложением нулей. Напомним их кратко. Если одно из двух слагаемых равно нулю, то сумма равна другому слагаемому. Сумма двух нулей есть нуль.
  3. Знать правила сравнения натуральных чисел. 
  4. Знать, что такое разряд натурального числа. Напомним, что разряд — это позиция и значение цифры в записи числа. Разряд определяет значение цифры в числе — единицы, десятки, сотни, тысячи и т.д.

Решение задач с единицами площади

Ребята, взрослые люди часто испытывают досаду, занимаясь ремонтом дома или квартиры. Почему? Знакома ситуация, когда чуть-чуть не хватило краски или обоев? Нужно срочно бежать в магазин, чтобы купить недостающие материалы. Можно ли этого избежать? Конечно, можно! Главное, правильно выполнить расчеты. Например, правильно измерить площадь пола под покраску или площадь стен под обои.

Задача

В комнате длиной 7 м и шириной 8 м укладывают на пол ламинат квадратами 50х50 см. Сколько штук ламината потребуется для этой комнаты?

Подсказка. Вычислите площадь комнаты и площадь одного квадрата ламината. Одинаковые ли единицы площади вы использовали? Выразите квадратные метры в квадратных сантиметрах.

Решите задачу самостоятельно.

Проверь себя.

S пола = 7 ∙ 8 = 56 (м²)

S лам. = 50 ∙50 = 2 500 (см²)

1 м² = 10 000 см²

10 000 : 2 500 = 4 (шт.) – ламината в 1 м².

56 ∙ 4 = 224 (шт.) – ламината потребуется.

Ответ: 224 штук ламината.

Задача

Для покраски пола комнаты площадью 35 м² купили 3 кг краски. Хватит ли этой краски, если на 1 м² пола расходуется 100 г краски.

Выразим 3 кг в граммах.

1 кг = 1 000 г

3 кг = 3 000 г

35 ∙ 100 = 3 500 (г) – краски потребуется.

3 500 – 3000 = 500 (г) – краски не хватит для покраски пола.

Ответ: 500 г краски не хватит.

Решите аналогичную задачу самостоятельно и проверьте по образцу.

Задача

Стены комнаты решили оклеить обоями. Площадь поверхности составляет 80 м². На одной стене есть окно – 3 м², а на другой – дверь занимает 4 м². Хватит ли 7 рулонов обоев, если в одном рулоне 10 м² обоев.

Проверь себя.

3 + 4 = 7 (м²) – занимают окно и дверь.

80 – 7 = 73 (м²) – нужно оклеить обоями.

7 ∙ 10 = 70 (м²) – в семи рулонах.

73 – 70  = 3 (м²) – обоев не хватит.

Ответ: не хватит 3 м².

Ребята, на уроке мы учились делить на трехзначное число без остатка и с остатком, решали сложные задачи с единицами площади. А теперь настало время подвести итоги! Устроим небольшое соревнование на звание «Знатока математики».

Решите примеры за одну минуту!

(12 543 – 3 890 + 15 498) ∙ 69 ∙ 0 ∙594 =

640 ∙5 ∙0 +640 : 1 – 630 =

? + 150 – 240 – 10 + 26 = 526

Проверь себя.

0, 10, 600.

Кому удалось справиться с заданием за одну минуту, может смело назвать себя большим молодцом!

В первом и втором выражениях самые наблюдательные заметили умножение на нуль (можно не вычислять все выражение, а ∙ 0 = 0).

В третьем выражении первое число можно быстро найти, вычисляя с конца обратным действием: 526 – 26 + 10 + 240 – 150 = 600

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

В курс входит 30 уроков с полезными советами и упражнениями для развития детей. В каждом уроке полезный совет, несколько интересных упражнений, задание к уроку и дополнительный бонус в конце: развивающая мини-игра от нашего партнера. Длительность курса: 30 дней. Курс полезно проходить не только детям, но и их родителям.

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Как научиться делить столбиком

Деление столбиком с остатком и без него нельзя начинать без подготовки. Сначала ребенок должен хорошо уметь и знать следующее:

  • Разряды натуральных чисел (десятки, сотни, тысячи). Находить их в ряду многозначных цифр.
  • Таблица умножения. Этот материал лучше выучить наизусть и постоянно повторять.
  • Отнимать, складывать не только однозначные или двузначные, но и многозначные числа.
  • Решать маленькие задачи на умножение, разность, сумму устно.

Отработайте все обозначенные умения до автоматизма. Затем приступайте к делению маленьких цифр на примере таблицы умножения в уме. Например, ребенок выучил, как умножать цифру 6:

6х2=12

6х3=18

6х4=24 и так далее.

Смело предлагайте такие примеры:

24:6=4

24:4=6

12:2=6

18:3=6

Через пару уроков школьник будет выполнять такие задания легко. Можно разнообразить занятия по устному счету играми на деление.

Игровые задания

Интересные математические игры на деление без остатка помогают детям закрепить навык, узнать законы работы с цифрами, освоить устный счет.

  • Головоломки на развитие внимания. Напишите в тетради 3–5 примеров на деление с ответами.

    Все, кроме одного, должны быть решены неверно. Нужно быстро найти тот пример, который содержит правильный ответ. Затем исправить остальные примеры с помощью устного счета.

  • Подбор примера по результату. Предлагайте малышу ответ без примера. Давайте задание придумать задачу. Например, ответ 8. Ребенок может придумать такую задачу: 48:6.
  • «Идем в магазин». Расставьте на полу игрушки с карточками. На листах написаны примеры: 6:2, 18:3, 42:7, 100:50. Игрушки — это «товар» в фантазийном магазине, частное после решения примера на карточке — их цена. Чтобы узнать стоимость покупки, нужно решить задания, а потом оплатить полученный результат в кассу. Играть лучше в небольшой команде — 2–3 человека.
  • «Молчуны». Ребенок получает карточки с цифрами от 1 до 100. Задавайте вопросы с примерами на деление, ученик должен отвечать без слов, показывая правильный ответ.
  • Небольшие самостоятельные работы с подарком за старательность. Распечатайте карточки с примерами в количестве 5–10 штук. Укажите время на решение, например 5 минут. Поставьте перед ребенком песочные часы. После выполнения контрольной верно поощрите школьника походом в зоопарк, кино, покупкой книги, сладостей. Такой тренажёр хорошо стимулирует детей.
  • «Ищем дерево».

    Нарисуйте небольшой сад с деревьями на картоне. Каждому растению дайте номер, пусть их будет 10. На листочке для ученика напишите 3 примера:

45:9           120:60          14:7

Школьник должен вычислять результат к каждому заданию, а потом складывать все числа между собой. Получится так:

45:9=5

120:60=2

14:7=2

5+2+2=9

Ребенок должен найти дерево под номером 9.

Для игры можно использовать цветные пуговицы и ставить их на занятые деревья. Развлечение подходит для командных соревнований.

После устной работы с делением натуральных чисел можно показать ребенку порядок записи примеров столбиком. Если педагогического опыта у вас нет и вы не знаете, как объяснить ребёнку процесс деления столбиком, то посмотрите видеоурок на эту тему, вспомните теорию сами.

Теперь можно приступать к объяснению сложного материала школьнику. Есть несколько методик домашнего обучения делению:

1. Мама-учитель

Родителям придется ненадолго стать педагогами. Оборудовать доску, купить мел или маркеры. Заранее вспомнить школьный материал по теме “деление уголком”. Объяснить пошагово теорию и закрепить ее на практике с помощью большого количества самостоятельных, карточек, контрольных работ.

Например, это:

Затем нужно обсуждать с малышом материал, закреплять навык на практике несколько недель.

3. Нанять репетитора

Деление (даже трёхзначных чисел на двузначные) не самая сложная тема в школьной программе. В начальных классах можно легко обойтись без платных уроков с педагогом.

Этот вариант оставим на крайний случай.

Вычитание столбиком из чисел, содержащих нули.

Опять же, разберем на примере:

Записываем числа в столбик. Которое больше — сверху. Начинаем вычитание справа налево по одной цифре. 9 — 3 = 6.

Из нуля вычесть 2 не получится, тогда опять занимаем у цифры слева. Это нуль. Ставим над нулем точку. И снова, у нуля занять не получится, тогда двигаемся дальше к следующей цифре. Занимаем у единицы. Ставим над ней точку.

Обратите внимание:
когда в вычитании столбиком над 0 есть точка, нуль становится девяткой. Над нашим нулем есть точка, значит, он стал девяткой

Вычитаем из нее 4. 9 — 4 = 5. Над единицей есть точка, то есть она уменьшается на 1. 1 — 1 = 0.
Полученный нуль не нужно записывать

Над нашим нулем есть точка, значит, он стал девяткой. Вычитаем из нее 4. 9 — 4 = 5
. Над единицей есть точка, то есть она уменьшается на 1. 1 — 1 = 0.
Полученный нуль не нужно записывать.

Удобно проводить особым методом, который получил название вычитание столбиком
или вычитание в столбик
. Этот способ вычитания оправдывает свое название, так как уменьшаемое, вычитаемое и разность записываются в столбик. Промежуточные вычисления также проводятся в столбиках, соответствующих разрядам чисел.

Удобство вычитания натуральных чисел столбиком заключается в простоте вычислений. Вычисления сводятся к использованию таблицы сложения и применению свойств вычитания.

Давайте разберемся, как выполняется вычитание столбиком. Процесс вычитания будем рассматривать вместе с решением примеров. Так будет понятнее.

Навигация по странице.

Вычитание столбиком подробное описание

Располагаем наши два числа, которые должны вычесть столбцом, по правилам, правая цифра под правой цифрой:

Смотрим первый столбец справа — 5 минус 4 — стандартная операция вычитания из большего числа меньшее, равно 1.

Второй столбец — 4 минус 9. 4 меньше 9, поэтому, забираем десяток из соседнего левого столбца(3) там остается 2.

Оставляем зарубку ‘ над числом 3, чтобы не забыть, что мы взяли оттуда единицу!

К десяти прибавляем 4 = 14, теперь мы можем отнять от 14 цифру 9 = 5 — сносим под черту.

Переходим к третьему столбцу справа. Это 3, но мы поставили там зарубку, что мы отсюда забрали единицу, значит здесь у нас осталась только двойка, 2 -1 = 1, сносим единицу под черту.

И последний столбец, под цифрой 8 ничего нет, и мы у восьмерки ничего не занимали, поэтому сносим её под черту без изменений.

Проверка сложения и вычитания

Ребята, по примеру на сложение составьте два примера на вычитание по образцу:

2 + 3 = 5                                     6 + 1 = 7                                        9 + 7 = 16

5 – 2 = 3                                     ………..                                           …………

5 – 3 = 2                                     ………..                                           …………

Молодцы! Вспомните, как называются числа при сложении!

Это правило пригодится нам для проверки правильности вычислений.

Например, 2 + 1 = 3

Проверку выполним вычитанием: 3 – 1 = 2 или 3 – 2 = 1.

Выполните самостоятельно сложение и сделайте проверку вычитанием:

17 + 3                                     76 + 4                                    20 + 19

17 + 3 = 20

20 – 3 = 17

76+ 4 = 80

80 – 4 = 76

20 + 19 = 39

39 – 20 = 19

Задание от Нуф-Нуфа. Ребята, вспомните, как называются числа при вычитании?

Ребята, выполните вычитание и сделайте проверку сложением:

30 – 9         100 – 40

30 – 9 = 21

21 + 9 = 30

100 – 40 = 60

60 + 40 = 100

Выполните вычитание и сделайте проверку, пользуясь правилом:

72–30               60–20

72 – 30 = 42

72 – 42 = 30

60 – 20 = 40

60 – 40 = 20

Уравнение. Решение уравнений методом подбора

Ребята, внимательно посмотрите на карточки с цифрами трех поросят. Чья карточка подходит для записи в рамке? Почему?

Подходит карточка с цифрой 8, потому что 8 + 2 = 10.

Вместо окошка запишем латинскую букву х (икс).

Получится запись: х + 2 = 10.

Это уравнение.

Ниф-Ниф просит из чисел 6, 5, 2, 1 подобрать для каждого уравнения такое значение у (игрек), при котором получится верное равенство:

8 + у = 9                12 – у= 10                у + 7 = 12                 у – 5 = 1

Мы решили уравнения методом подбора. Обязательно нужно сделать проверку. Для этого вместо у (игрек) подставим в уравнение нужное число и убедимся, что равенство верное.

8 + у = 9

у = 1

8 + 1 = 9

9 = 9

у + 7 = 12

у = 5

5+7=12

12 = 12

12 – у = 10

у = 2

12 – 2 = 10

10 = 10

у – 5 = 1

у = 6

6 – 5 = 1

1 = 1

А теперь задание от Наф-Нафа. Ребята, найдите среди этих записей уравнение и решите его методом подбора.

3 + у             10 – х               14 – 2               b < 3               у – 6 = 2               а + 5

у – 6 = 2

у = 8

8 – 6 = 2

2 = 2

Вычитание в столбик однозначных объяснение для ребенка.

В качестве примера вычтем из 9 чилло 5. Если ребенок не умеет считать вообще, то можно показать на пальцах(ну по крайней мере нас учили так!). Не обязательно рассказывать и показывать на пальцах. Но почему это будет легче объяснить на пальцах, потому, что будет возникать визуальный ряд! Я не говорю, что такая методика правильная или не правильная — она просто существует и я её вам рассказываю! Это уже ваше дело какую методику выбирать!

Т.е. показываем ребенку 9 пальцев:

Убираем одну руку, которая обозначает 5 пальцев.

Спрашиваем у ребенка, сколько остается.

Проделываем так несколько раз, на разных числах.

Родителям / Наставникам

Урок вычитание

Вычитание – это арифметическое действие, в процессе которого ищется разность 2 чисел и ответов является третье.Формула сложения выражается так: a — b = c
.

Примеры и задачи Вы сможете найти ниже.

При вычитании дробей
следует помнить, что:

Дана дробь 7/4, получаем, что 7 больше 4, а значит 7/4 больше 1. Как выделить целую часть? (4+3)/4, далее получаем сумму дробей 4/4 + 3/4, 4:4 + 3/4=1 + 3/4. Итог: одна целая, три четвертых.

Вычитание 1 класс

Первый класс – начало пути, начало обучения и изучения основ, в том числе и вычитания. Обучение стоит вести в игровой форме. Всегда в первом классе вычисления начинают с простых примеров на яблоках, конфетах, грушах. Используется этот метод не зря, а потому что детям намного интереснее, когда с ними играют. И это не единственная причина. Яблоки, конфеты и тому подобное дети видели очень часто в свой жизни и имели дело с передачей и количеством, поэтому научить сложению таких вещей будет не сложно.

Задачи на вычитание первоклассникам можно придумать целую тучу, к примеру:

Задача 1.
Утром, гуляя по лесу ежик нашел 4 грибочка, а вечером, когда пришел домой, ежик на ужин скушал 2 грибочка. Сколько грибочков осталось?

Задача 2.
Маша пошла в магазин за хлебом. Мама дала маше 10 рублей, а хлеб стоит 7 рублей. Сколько Маша должна принести денег домой?

Задача 3.
В магазине утром на прилавке находилось 7 килограмм сыра. До обеда посетители выкупили 5 килограмм. Сколько килограмм осталось?

Задача 4.
Рома вынес во двор конфеты, который дал ему папа. У Ромы было 9 конфет, а своему другу Никите он дал 4. Сколько конфет осталось у Ромы?

Первоклассники в основном решают задачи, в которых ответом будет число от 1 до 10.

Вычитание 2 класс

Второй класс это уже выше первого, а соответственно и примеры для решения тоже. Итак, приступим:

Числовые задания:

Однозначные числа:

  1. 10 — 5 =
  2. 7 — 2 =
  3. 8 — 6 =
  4. 9 — 1 =
  5. 9 — 3 — 4 =
  6. 8 — 2 — 3 =
  7. 9 — 9 — 0 =
  8. 4 — 1 — 3 =

Двузначные числа:

  1. 10 — 10 =
  2. 17 — 12 =
  3. 19 — 7 =
  4. 15 — 8 =
  5. 13 — 7 =
  6. 64 — 37 =
  7. 55 — 53 =
  8. 43 — 12 =
  9. 34 — 25 =
  10. 51 — 17 — 18 =
  11. 47 — 12 — 19 =
  12. 31 — 19 — 2 =
  13. 99 — 55 — 33 =

Текстовые задачи

Вычитание 3-4 класс

Суть вычитания в 3-4 классе – вычитание в столбик больших чисел.

Рассмотрим пример 4312-901. Для начала запишем числа друг под другом, так чтобы из числа 901 единица была под 2, 0 под 1, 9 под 3.

Затем производим вычитание справа налево, то есть из числа 2 число 1. Получаем единицу:

Вычитая из тройки девять, нужно позаимствовать 1 десяток. То есть из 4 вычитаем 1 десяток. 10+3-9=4.

А так как у 4 заняли 1, то 4-1=3

Ответ: 3411.

Вычитание 5 класс

Пятый класс – это время для работы над сложными дробями с разными знаменателями. Повторим правила:1. Вычитаются числители, а не знаменатели.

Итак, вычитаем. Убедились, что знаменатели одинаковые. Тогда вычитаем числители (2-1)/4, так получаем 1/4. При складывании дробей, вычитаются только числители!

2. Чтобы осуществить вычитание, убедитесь, что знаменатели равны.

Попалась разность дробей, к примеру, 1/2 и 1/3, то домножить придется не одну дробь, а обе, чтобы привести к общему знаменателю. Самый простой способ сделать это: первую дробь умножить на знаменатель второй, а вторую дробь на знаменатель первой, получаем: 3/6 и 2/6. Складываем (3-2)/6 и получаем 1/6.

3. Сокращение дроби производится путем деления числителя и знаменателя на одинаковое число.

Дробь 2/4 можно привести к виду ½. Почему? Что из себя представляет дробь? ½ = 1:2, а если делить 2 на 4, то это тоже самое, что делить 1 на 2. Поэтому дробь 2/4 = 1/2.

4. Если дробь больше единицы, то можно выделить целую часть.

Дана дробь 7/4, получаем, что 7 больше 4, а значит 7/4 больше 1. Как выделить целую часть? (4+3)/4, далее получаем сумму дробей 4/4 + 3/4, 4:4 + 3/4=1 + 3/4. Итог: одна целая, три четвертых.

Сложение столбиком

Сложение многозначных натуральных чисел удобней выполнять в столбик.

Сложение столбиком — это форма записи и способ сложения, используемый при сложении многозначных чисел. Сложение столбиком иначе ещё называют сложением в столбик.

Рассмотрим сложение столбиком на примере сложения чисел  7056  и  483.

Сложение в столбик записывается так: одно слагаемое записывается под другим так, чтобы цифры одинаковых разрядов стояли друг под другом (единицы под единицами, десятки под десятками и т. д.). Для удобства обычно меньшее число записывают под большим. Слева между слагаемыми ставится знак плюс, а под нижним слагаемым проводится горизонтальная черта:

Полученную запись можно мысленно разбить на столбики так, как это показано на рисунке:

Все дальнейшие действия сводятся к сложению однозначных чисел, которые находятся в одном столбике. Вычисление выполняется поразрядно справа налево, начиная с разряда единиц.

Если в результате сложения получается число меньшее  10,  то оно записывается под чертой в этом же разряде.

Начинаем вычисление с разряда единиц: складываем числа  6  и  3.  В результате имеем число  9.  Так как  9 < 10,  то записываем это число под чертой, в том же разряде:

Если в результате сложения получается число, равное  10  или большее  10,  то под чертой в этом же разряде записывается значение разряда единиц полученного числа, а значение разряда десятков полученного числа запоминается (оно используется на следующем шаге).

Переходим к сложению чисел в следующем разряде, то есть к сложению значений разряда десятков. Складываем числа  5  и  8,  получаем число  13.  Так как  13 > 10,  то под чертой, в том же разряде, записываем число  3  (это значение разряда единиц числа  13),  а число  1  запоминаем (это значение разряда десятков числа  13),  при этом говорят  три пишем, а один в уме.  Чтобы не забыть о запомненном числе, его обычно записывают сверху над следующим (слева) разрядом:

Запомненное число прибавляется к сумме чисел следующего разряда.

Переходим к следующему разряду и складываем числа  0  и  4.  В результате имеем  4.  К полученному числу прибавляем запомненное число  1,  получаем  5.  Так как  5 < 10,  то под чертой, в том же разряде, записываем число  5:

После этого происходит переход на один разряд влево и действия повторяются. Данный процесс продолжается до тех пор, пока числа не закончатся.

Если в столбике содержится только одно число, и у нас нет запомненного числа (от предыдущего сложения), в этом случае мы просто записываем это число под чертой, в том же разряде.

Так как в следующем столбике находится лишь одно число —  7,  и в памяти у нас нет запомненного числа, то мы просто записываем  7  под чертой, в том же разряде:

Дальше никаких чисел нет и в памяти тоже чисел нет. На этом процесс сложения можно считать завершённым. Натуральное число, получившееся под чертой, является результатом сложения данных чисел. Теперь можно записать сумму данных чисел в обычном виде:

7056 + 483 = 7539.

Рассмотрим ещё пару примеров сложения столбиком, чтобы разобраться с оставшимися нюансами.

Пример 1. Сложим числа  29  и  6  столбиком.

Складываем  9  и  6,  в результате получаем число  15.  Так как  15 > 10,  то число  5  записываем, а число  1  запоминаем:

Если в столбике содержится только одно число, и у нас имеется запомненное число (от предыдущего сложения), то запомненное число просто прибавляется к этому одному числу.

В следующем столбике находится лишь одно число —  2.  Так как у нас в памяти имеется число  1,  то его нужно прибавить к  2.  В результате получаем число  3:

Дальше никаких чисел нет и запомненного числа тоже нет, следовательно, сложение столбиком завершено.

Пример 2. Сложим столбиком числа  43  и  94.

Складываем  3  и  4.  В результате имеем число  7.  Так как  7 < 10,  то записываем это число под чертой, в том же разряде:

Если в последнем разряде в результате сложения получается число, равное  10  или большее  10,  то под чертой в этом же разряде записывается значение разряда единиц полученного числа, а значение разряда десятков полученного числа записывается под чертой в следующий разряд.

В следующем разряде складываем числа  4  и  9,  получаем число  13.  Так как  13 > 10,  то под чертой, в том же разряде, записываем число  3,  а число  1  записываем под чертой в следующий разряд:

Дальше никаких чисел нет и в памяти числа тоже нет, следовательно, сложение в столбик завершено.

Удобство сложения в столбик заключается в том, что сложение многозначных натуральных чисел фактически сводится к сложению однозначных чисел и запись процесса сложения занимает меньше места.

Как делить столбиком

Допустим, нам нужно разделить  780  на  12,  записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число  7,  так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число  78  больше делителя, поэтому мы начинаем деление с него:

В нашем случае число  78  будет неполным делимым, неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра —  0,  это значит, что частное будет состоять из  2  цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз  12  содержится в числе  78.  Для этого мы последовательно умножаем делитель на натуральные числа  1, 2, 3, …,  пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число  6,  записываем его под делитель, а из  78  (по правилам вычитания столбиком) вычитаем  72  (12 · 6 = 72).  После того, как мы вычли  72  из  78,  получился остаток  6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше

К получившемуся остатку —  6,  сносим следующую цифру делимого —  0.  В результате, получилось неполное делимое —  60.  Определяем, сколько раз  12  содержится в числе  60.  Получаем число  5,  записываем его в частное после цифры  6,  а из  60  вычитаем  60  (12 · 5 = 60).  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит  780  разделилось на  12  нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:

780 : 12 = 65.

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить  9027  на  9.

Определяем неполное делимое — это число  9.  Записываем в частное  1  и из  9  вычитаем  9.  В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого —  0.  Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль  (0 : 9 = 0)  и в промежуточных вычислениях из  0  вычитаем  0.  Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого —  2.  В промежуточных вычислениях вышло так, что неполное делимое  (2)  меньше, чем делитель  (9).  В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз  9  содержится в числе  27.  Получаем число  3,  записываем его в частное, а из  27  вычитаем  27.  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число  9027  разделилось на  9  нацело:

9027 : 9 = 1003.

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить  3000  на  6.

Определяем неполное делимое — это число  30.  Записываем в частное  5  и из  30  вычитаем  30.  В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого —  0.  Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из  0  вычитаем  0:

Сносим следующую цифру делимого —  0.  Записываем в частное ещё один нуль и в промежуточных вычислениях из  0  вычитаем  0.  Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток —  0.  Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит  3000  разделилось на  6  нацело:

3000 : 6 = 500.

Навигация по записям

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector