Теория звука. что нужно знать о звуке, чтобы с ним работать. опыт яндекс.музыки
Содержание:
- Действие микрофона
- Виды звуковых полей
- Звуковые волны. Распространение звука. Опыты
- Разновидности тонов и полутонов
- Презентация на тему: » Свойства звука. Звуковые явления.. Повторение. 1.Какие волны называются звуковыми? 2.Какие частоты может слышать человеческое ухо? 3.Приведите примеры.» — Транскрипт:
- Музыкальные пристрастия
- Как возникают звуки?
- Биения
- Звуковые явления
- Что такое Герц (Hz)?
- Классическая и эстрадная музыка
- Распространение звука
- Обозначение мягкости согласных на письме
Действие микрофона
Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее — на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них – звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно – как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.
Виды звуковых полей
http-equiv=»Content-Type» content=»text/html;charset=UTF-8″>yle=»text-align: justify;»>Звуковые поля имеют несколько видов. Конечно, они излучаются различными источниками (рояль, вокалист, оркестр, ансамбль и т. п.) и могут иметь очень сложную структуру. Но для упрощения анализа структуры звуковых полей применяют обычно следующую классификацию: звуковое поле сферической волны, плоской и цилиндрической.
Звуковое поле сферической волны
Перед тем как рассматривать этот вид, скажем ещё о двух важных понятиях (фронт звуковой волны и звуковой луч).
Фронт звуковой волны — это поверхность, соединяющая точки среды, находящиеся в одинаковой фазе колебаний (например, круги на воде)
Звуковой луч — это линия, перпендикулярная фронту волны и направленная в сторону распространения звуковых волн.
Итак, сферическая волна относится к области низких частот, где длина звуковой волны велика по отношению к размеру источника. Например, на частоте 40 Гц длина волны составляет 8,5 метров. Практически любой источник звука будет иметь размеры меньше, чем эта длина волны.
Можно считать, что источник сигнала является точечным, а звуковые трёхмерные волны, расходящиеся от него сферические. (См. фото выше)
Фронт такой волны представляет сферу, где в центре источник звука, а звуковые лучи совпадают с радиусами.
Мощность (энергия), излучаемая таким точечным источником, распространяется равномерно по всем направлениям и не меняется при удалении от источника (если только не брать потери на вязкость, теплопроводность и др.)
Звуковое давление в поле сферической волны убывает пропорционально квадрату расстояния от источника.
Это очень важный аспект при записи музыкальных инструментов. Если предположить, что интенсивность меняется одинаково во всех направлениях, то сигналы равноудалённых микрофонов от источника, при прочих равных условиях, одинаковы.
Кроме этого, на низких частотах вблизи источника сигнала звуковое поле сферическое, а давление в нём меняется с изменением расстояния. При близком расположении направленных микрофонов возникает известный эффект (proximity — эффект ближней зоны) — получается гипертрофированная передача низких частот, что в большинстве случаев нежелательно, если только так не задумано автором. Происходит это потому, что разность давлений, действующая на обе стороны диафрагмы, усиливается ещё и разницей в уровнях звукового давления на фронтальной и тыльной стороне микрофона, так как они находятся на разных фронтах сферической волны. Поэтому направленные микрофоны воспринимают низкие частоты по-разному, в зависимости от их расстояния до источника.
Звуковое поле плоской волны
Среднечастотные и тем более высокочастотные составляющие порождают плоские волны.
Когда длина волны становится намного меньше размера источника и когда расстояние до источника увеличивается, то сферическую волну приближенно можно заменить плоской.
Фронт звуковой волны в плоской волне — это звуковые лучи, которые идут параллельно и при этом интенсивность и звуковое давление не зависят от расстояния.
На практике это означает, что звуковое давление уменьшается с расстоянием за счет различных потерь (вязкость среды, теплопроводность и т. д.)
Звуковое поле от любого источника на больших расстояниях можно считать плоским.
Звуковое поле цилиндрической волны
Если источник сильно вытянут в одном направлении (например, звуковая колонка), то вокруг него образуется звуковое поле цилиндрической волны.
Фронт звуковой волны представляет цилиндрические увеличивающиеся поверхности, а звуковые лучи направлены по радиусу цилиндра.
Вывод
Условно можно запомнить следующие:
- на низких частотах и на достаточно близких расстояниях вокруг источника звука образуется сферическая волна
- на высоких частотах и на достаточно больших расстояниях эти же источники создают плоскую звуковую волну
- звуковое давление изменяется от расстояния и зависит от структуры звукового поля (особенно это актуально с описанным выше proximity — эффектом ближней зоны).
Спасибо, что читаете New Style Sound. Подписывайтесь (RSS-лента) и делитесь с друзьями.
Звуковые волны. Распространение звука. Опыты
- Подробности
- Просмотров: 428
09.2017
С точки зрения физики, звук — это механическое колебание, распространяющееся в среде. Опыт 1
Как частота возникающего звука зависит от длины колеблющегося тела?
Положите гибкую пластиковую или металлическую линейку на стол так, чтобы она примерно на три четверти выступала за край стола.
Крепко прижмите рукой один край линейки к столу
Другой рукой отогните свободный край линейки вниз и отпустите его.
Послушайте, какой звук при этом возникнет, и обратите внимание на то, как быстро колеблется свободный конец линейки.
Повторите опыт, но когда линейка начнет колебаться, медленно подвиньте ее так, чтобы выступающая над столом часть линейки стала меньше
Оказывается, что при уменьшении длины колеблющегося конца линейки звук меняется. Заметьте, как при уменьшении длины колеблющегося конца линейки будет меняться издаваемый ею звук и как быстро будет колебаться конец линейки в этом случае.
Почему?
Звуковые волны — это волны, возникающие в результате колебаний какого-либо тела и распространяющиеся в среде. Колеблющееся тело вынуждает окружающую его среду колебаться. Линейка — колеблющийся источник звука. Колебания линейки заставляют молекулы воздуха, находящиеся рядом с линейкой, двигаться вперед и назад с той же частотой.
При этом создаются области сжатий (там, где молекулы спрессованы более тесно) и разрежений (там, где молекулы удалены друг от друга дальше обычного расстояния). Волны, в которых есть области сжатий и разрежений, называются продольными. К продольным волнам относятся звуковые волны.
Благодаря движению воздуха вокруг колеблющейся линейки звуковая энергия передается через воздух. Колебания воздуха достигают ваших ушей и ударяют о барабанные перепонки, и они тоже начинают колебаться. Частота колебаний барабанных перепонок интерпретируется мозгом как звук определенной высоты. При уменьшении длины линейки частота ее колебаний увеличивается. Таким образом, частота колебаний линейки обратно пропорциональна ее длине. Звук становится выше по мере того, как частота возрастает.Опыт 2
Будет ли высота звука зависеть от плотности вещества, из которого сделано колеблющееся тело, и если будет, то каким образом?
Повторите опыт с деревянной линейкой, т.е. с линейкой из более плотного материала. Опыт 3
Звуковая волна переносит энергию. Может ли звук совершать работу?
Отрежьте дно у бумажного стакана объемом 270 мл. Возьмите квадратный кусок вощеной бумаги с длиной стороны 15 см. С помощью тонкого маркера нарисуйте на бумаге сетку, состоящую из квадратиков со стороной 1 см. Накройте верх стакана этой бумагой и закрепите ее на стакане с помощью резинки. Лишние части бумаги отрежьте. В квадратике, находящемся в самом центре на стакане, нарисуйте крестик: X. Положите радиоприемник или колонку вверх громкоговорителем.
Следующая страница «Звучащий стакан. Флейта из соломинки. Звучание струны. Отражение звука. Опыты»
Назад в раздел «Простые опыты»
Разновидности тонов и полутонов
Сразу скажем, что с прикладной точки зрения, для игры на музыкальных инструментах или обучения вокалу вам эти сведения особо не пригодятся. Однако термины, обозначающие виды тонов и полутонов, могут встретиться в специальной литературе. Поэтому о них нужно иметь представление, чтобы не останавливаться на непонятных моментах во время чтения литературы или углубленного изучения музыкального материала.
Тон (виды):
- Диатонический.
- Хроматический.
Полутон (виды):
- Диатонический.
- Хроматический.
Как видите, названия повторяются, так что запомнить будет нетрудно. Итак, разбираемся!
Диатонический полутон (виды):
- Полутон между 2 соседствующими основными ступенями (нотами) звукоряда E-F и B-C.
- Полутон между основной и соседствующей производной ступенью как на повышение, так и на понижение.
- Полутон между производными ступенями.
Некоторые примеры вы можете увидеть на картинке:
Хроматический полутон (виды):
- Полутон между основной нотой и следующей, пониженной либо повышенной.
- Полутон между повышением и двойным повышением ноты.
- Полутон между понижением и двойным понижением ноты.
Диатонический тон (виды):
- Тон между основными ступенями C-D, D-E, F-G, G-A, A-B.
- Любой тон, который не относится к хроматическому.
Хроматический тон (виды):
- Тон между 2 производными ступенями от основной ноты.
- Тон между нотами, находящимися через 1 ступень.
Уточним, что примеры взяты из учебника Варфоломея Вахромеева «Элементарная теория музыки» и для наглядности изображены на клавиатуре фортепиано, т.к. нотный стан мы будем изучать только на следующем уроке, а понятия тона и полутона нам нужны уже сейчас . В целом, мы еще неоднократно будем обращаться к трудам этого великого российского педагога и музыковеда на протяжении нашего курса.
К слову, в 1984 году за несколько месяцев до своей смерти Варфоломей Вахромеев был награжден Орденом Святого равноапостольного князя Владимира 2-й степени за составленный им «Учебник церковного пения» для духовных школ РПЦ. Учебник выдержал несколько переизданий уже после его смерти .
Еще одна важная информация, которая нам нужна прежде, чем мы перейдем к нотной грамоте. Нам уже встретились понятия повышения и понижения основной ступени звукоряда. Так вот, повышение ступени обозначается словом и значком диез (♯), а понижение – словом и значком бемоль (♭).
Повышение на 2 полутона обозначается двойным диезом или дубль-диезом, понижение на 2 полутона обозначается двойным бемолем или дубль-бемолем. Для двойного диеза есть специальный значок, похожий на крестик , но, т.к. его трудно подобрать на клавиатуре, может использоваться обозначение ♯♯ или просто две решетки ##. С дубль-бемолями проще, пишут либо 2 значка ♭♭, либо латинские буквы bb.
И, наконец, последнее, о чем нужно поговорить в теме «Свойства звука», это энгармонизм звуков. Ранее вы узнали, что полутона в пределах октавы равны. Поэтому звук, сниженный на полутон относительно основной ступени, будет равен по высоте звуку, повышенному на полутон относительно ступени, стоящей двумя полутонами ниже.
Проще говоря, ля-бемоль (А♭) и соль-диез (G♯) одной и той же октавы звучат идентично. Точно так в пределах октавы одинаково прозвучат соль-бемоль (G♭) и фа-диез (F♯), ми-бемоль (Е♭) и ре-диез (D♯), ре-бемоль (D♭)и до-диез (С♯) и т.д. Явление, когда одинаковые по высоте звуки имеют разные названия и обозначаются разными символами, называется энгармонизмом звуков.
Для простоты восприятия мы продемонстрировали это явление на примере ступеней (нот), между которыми имеется 2 полутона. В других случаях, когда между основными ступенями всего 1 полутон, это менее наглядно. К примеру, фа-бемоль (F♭) – это чистая нота ми (Е), а ми-диез (Е♯) – это чистая нота фа (F). Тем не менее в специальной литературе по теории музыки могут встретиться и такие обозначения как фа-бемоль (F♭) и ми-диез (Е♯). Вы теперь знаете, что они значат.
Сегодня вы изучили основные физические свойства звука вообще и свойства музыкального звука в частности. Вы разобрались с музыкальной системой и звукорядом, ступенями звукоряда, октавами, тонами и полутонами. Также вы разобрались в нотно-октавной системе и теперь готовы пройти проверочный тест по материалу урока, в который мы включили наиболее важные с практической точки зрения вопросы.
Презентация на тему: » Свойства звука. Звуковые явления.. Повторение. 1.Какие волны называются звуковыми? 2.Какие частоты может слышать человеческое ухо? 3.Приведите примеры.» — Транскрипт:
1
Свойства звука. Звуковые явления.
2
Повторение. 1. Какие волны называются звуковыми? 2. Какие частоты может слышать человеческое ухо? 3. Приведите примеры источников звука. 4. Какие источники звука являются искусственными, какие естественными? 5. Звуковые волны являются продольными или поперечными? 6. Сравните скорость распространения звука в газах, жидкостях и твердых телах. 7. От чего зависит скорость звука?
3
Громкость звука Громкость звука зависит от амплитуды колебаний не прямо пропорционально, и при равной амплитуде человек воспринимает звуки с частотой от 1 к Гц до 5 к Гц как более громкие. Громкость, вообще говоря, сложным образом зависит от звукового давления (интенсивности звука). Измеряется в фонах или в сонах. Сон — это единица условной шкалы громкости звука. 1 сон соответствует тихому разговору, а 250 сон; — работающему реактивному двигателю. Начиная с 200 сон, звук вызывает ощущения боли. Громкость звука можно увеличить, используя рупор или мегафон. Кроме того, рупор можно использовать и для усиления принимаемой звуковой волны.
4
Высота звука Высота звука — качество звука, определяемое человеком субъективно на слух и зависящее в основном от частоты звука. С увеличением частоты высота звука увеличивается. Звуковую волну определенной частоты иначе называют музыкальным тоном. Поэтому о высоте звука часто говорят как о высоте тона. Основной тон с «примесью» нескольких колебаний других частот образует музыкальный звук. От состава каждого сложного звука зависит его тембр. При обычной речи в мужском голосе встречаются колебания с частотой от 100 до 7000 Гц, а в женском — от 200 до 9000 Гц. Наиболее высокочастотные колебания входят в состав звука согласной «с».
5
Звуковые явления. Звуковой резонанс Поглощение звука Отражение звука
6
Звуковые явления. Эхо. Эхо это звуковые волны, отраженные от какого-либо препятствия (зданий, холмов, леса и т. п.) и возвратившиеся к своему источнику. Если до нас доходят звуковые волны, последовательно отразившиеся от не скольких препятствий и разделенные интервалом времени t> мс, то возникает многократное эхо. Некоторые из таких эхо приобрели всемирную известность. Так, например, скалы, раскинутые в форме круга возле Адерсбаха в Чехии, в определенном месте троекратно повторяют 7 слогов, а в замке Вудсток в Англии эхо отчетливо повторяет 17 слогов! Название «эхо» связано с именем горной нимфы Эхо, которая, согласно древнегреческой мифологии, была безответно влюблена в Нарцисса. От тоски по возлюбленному Эхо высохла и окаменела, так что от нее остался лишь голос, способный повторять окончания произнесенных в ее присутствии слов.
7
Звуколокация.
8
Решение задач. 1. В поле звук распространяется на значительно большее расстояние, чем в лесу. Почему? 2. Кто п полете быстрее машет крыльями: муха, шмель или комар? Как это можно определить? 3. При переходе из одной среды в другую длина звуковой волны увеличилась в три раза. Как при этом изменилась высота звука? 4. Опытные шоферы оценивают давление воздуха в баллоне колеса автомашины по звуку, получаемому при ударе по баллону металлическим предметом. Как зависит высота звука, издаваемого баллоном, от давления воздуха в нем? 5. Зачем басовые струны гитары обматывают металлической проволокой?
9
Решение задач. 6. Герой одного из рассказов О. Г’енри ударил поросенка с такой силой, что поросенок полетел, «опережая звук собственного визга». С какой скоростью должен был лететь поросенок, чтобы этот случай был бы реальным? 7. На высоте 4 км над наблюдателем пролетел реактивный самолет со скоростью 510 м/с. На каком расстоянии от наблюдателя будет находиться самолет, когда наблюдатель услышит звук? 8. Зачем будку суфлера в театре обивают войлоком? 9. Какова длина звуковой волны в воде, вызываемой источником колебаний с частотой 200 Гц, если скорость звука в воде равна 1450 м/с? 10. При измерении глубины моря под кораблем при помощи эхолота оказалось, что моменты отправления и приема ультразвука разделены промежутком времени 0,6 с. Какова глубина моря под кораблем?
Музыкальные пристрастия
Для многих не секрет, что разным возрастным группам нравится разная музыка. Но мало кто задумывался над вопросом – почему? Дело в том, что одна и та же музыка по-разному влияет на людей, имеющих различный интеллектуальный и нравственный уровень. Музыка предлагает сущности человека определённое качественно состояние, которое может быть в гармонии с его собственным, или является полностью несовместимым.
В первом случае человек чувствует внутренний подъём, радость. При этом реакция происходит на подсознательном уровне и практически не контролируется сознанием человека. При дисгармонии между музыкой и качественной структурой сущности (состоянием человека), у человека может появиться раздражение или другие эмоциональные проявления, побуждающие человека прекратить слушать данную музыку. Подобное реагирование на музыку является защитной реакцией человека.
Давайте попытаемся понять, почему при слушании музыки может появиться защитная реакция? Как музыка воздействует на человека?
Как возникают звуки?
Звуки возникают в тех случаях, когда крохотные частицы, образующие
воздух, совершают очень быстрые и короткие движения вперед-назад. Такие
движения называются колебательными.
Когда вы ударяете по барабану, его поверхность колеблется и
сталкивается с частицами воздуха. Частицы воздуха, в свою очередь,
сталкиваются с другими такими же частицами, находящимися рядом с ними.
Звук распространяется в виде воля колеблющегося воздуха. Эти волны
расходятся широкими кругами. Сильные колебания вызывают громкие звуки,
а слабые, соответственно, тихие. Излучают звук колеблющиеся тела:
струна, камертон (если по ним ударить), колебания воздуха в прорези
свистка, колебания голосовых связок и т. п.
Воздух — это смесь газов. Молекулы газов, составляющие воздух,
находятся в беспорядочном тепловом движении, беспрерывно сталкиваются
друг с другом и разлетаются. За 1 секунду каждая молекула сталкивается
с другими миллиарды раз. Скорость их движения достигает 1000 м/сек.
Атмосфера существует на Земле только благодаря притяжению планеты; если
бы оно исчезло, все молекулы воздуха немедленно улетели бы в
межзвездное пространство. Притяжение Земли создает и атмосферное
давление. Но молекулы воздуха не падают на Землю, подобно камню, так
как они обладают кинетической энергией, беспрерывно обмениваются ею
друг с другом, противодействуют сжимающему их давлению. Это значит, что
газ обладает упругостью: он сопротивляется сжатию, а когда давление
снято, расширяется, занимая весь предоставленный ему объем. Упругостью
обладают и жидкости и твердые тела.
В твердых телах и в жидкостях действуют большие силы
межмолекулярного притяжения. Их молекулы не могут разойтись на
расстояние большее, чем позволяют эти силы. В газах же такие силы очень
слабы и их молекулы сближает только внешнее давление.
Упругость воздуха выражается в том, что любое давление на воздух
передается им равномерно во все стороны. Поэтому и возможна в воздухе
передача упругих волн, т. е. сжатий и разрежений газа, созданных любым
посторонним телом.
Из всего многообразия упругих волн звуковыми называют лишь те из
них, которые способен воспринимать наш орган слуха. Возникновение,
распространение и свойства звуковых волн изучаются специальным разделом
физики — акустикой.
Почему звуки отличаются друг от друга?
Когда частицы воздуха колеблются очень быстро, звуковые волны
следуют вплотную одна за другой. В таких случаях вы слышите высокий
звук, вроде птичьего чирикания.
Если же частицы воздуха колеблются медленно, то расстояние между
звуковыми волнами увеличивается. Тогда вы слышите низкий звук, вроде
пыхтения грузовика. Скорость колебаний называется звуковой частотой.
Биения
Разберем также такое явление, как биения.
Определение 11
Биение – это явление, возникающее, когда две гармонические волны с близкими, но все же имеющими отличия частотами, накладываются друг на друга.
Биения сопровождают, к примеру, одновременное звучание двух струн, имеющих настройки практически одинаковой частоты. Человеческий орган слуха воспринимает биения как гармонический тон с громкостью, периодически изменяющейся во времени. Запишем выражения, показывающие закономерность изменения звуковых давлений p1 и p2, которые осуществляют воздействие на ухо:
p1=Acos ω1t и p2=Acos ω2t.
Для удобства примем, что амплитуды колебаний звуковых давлений являются одинаковыми и равны p=A.
Согласно принципу суперпозиции полное давление, которое вызывается обеими волнами в каждый момент времени, есть совокупность звуковых давлений, задаваемых каждой волной в тот же момент времени. Запишем выражение, показывающее суммарное воздействие волн, используя тригонометрические преобразования:
p=p1+p2=2Acosω1-ω22tcosω1+ω22t=2Acos12∆ωtcosωсрt,
где ∆ω=ω1-ω2, аωср=ω1+ω22.
Рисунок 2.7.3(1) отображает, каким образом давления p1 и p2 зависимы от времени t. В момент времени t= оба колебания находятся в фазе, и их амплитуды суммируются. Поскольку частоты колебаний имеют хоть и небольшие, но отличия, через некоторое время t1 колебания войдут в противофазу. В этот момент суммарная амплитуда станет равна нулю: колебания взаимно «погасятся». К моменту времени t2=2t1 колебания вновь окажутся в фазе и т. д. (рисунок 2.7.3(2)).
Определение 12
Период биений Тб – это минимальное значение интервала между двумя моментами времени, которым соответствуют максимальная и минимальная амплитуда колебаний.
Формула, которая определяет медленно изменяющуюся амплитуду Aрезультирующего колебания, имеет запись:
A=2Acos12∆ωt.
Период Тб изменения амплитуды равен 2πΔω. Мы можем это продемонстрировать, приняв следующее предположение: периоды колебаний давлений в звуковых волнах T1 и T2 являются такими, что T1<T2 (т. е. ω1>ω2). За период биений Тб наблюдается некоторое число n полных циклов колебаний первой волны и (n–1) циклов колебаний второй волны:
Tб=nT1=(n-1)T2.
Отсюда следует:
Tб=T1T2T2-T1=2πω1-ω2=2π∆ω или fб=1Tб=1T1-1T2=f1-f2=∆f.
fб есть частота биений, определяемая как разность частот Δf двух звуковых волн, которые воспринимаются ухом одновременно.
Органы слуха человека способны к восприятию звуковых биений до частот 5–10 Гц. Прослушивание биений – это важный элемент техники настройки музыкальных инструментов.
Рисунок 2.7.3. Биения, возникающие, когда накладываются две звуковые волны с близкими частотами.
Рисунок 2.7.4. Модель явления биений.
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Звуковые явления
Эхо. Эхо образуется в результате отражения звука от различных преград — гор, леса, стен, больших зданий и т.п. Эхо возникает только в том случае, когда отраженный звук воспринимается раздельно от первоначально произнесенного звука. Если отражающих поверхностей много и они находятся на разных расстояниях от человека, то отраженные звуковые волны дойдут до него в разные моменты времени. В этом случае эхо будет многократным. Препятствие должно находится на расстоянии 11м от человека, чтобы можно было услышать эхо.
Отражение звука. Звук отражается от гладких поверхностей. Поэтому при использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается, и он распространяется на большее расстояние.
Некоторые животные (например, летучая мышь, дельфин) издают ультразвуковые колебания, затем воспринимают отраженную волну от препятствий. Так они определяют местоположение и расстояние до окружающих предметов.
Что такое Герц (Hz)?
Герц – единица для обозначения частоты периодических процессов (в нашем случае – частота звуковых колебаний) в Международной системе единиц; международное обозначение: Hz.
1 Гц означает одно исполнение (реализацию) процесса биения за одну секунду, другими словами – одно колебание в секунду. Приблизительно с такой же частотой в спокойном состоянии бьётся человеческое сердце (примечательно, что Herz в переводе с немецкого означает «сердце»).
Например, 10 Гц – десять исполнений такого процесса, или десять колебаний за одну секунду. Если частота воздушной волны в 200 Гц, это значит, колебания плотности воздуха – 200 раз в одну секунду. Таким образом, частота звука измеряется в герцах, то есть в количестве колебаний за одну секунду. Более интенсивные колебания (тысячи колебаний в секунду) измеряются в килогерцах.
Человеческое ухо воспринимает частоту колебания воздуха как высоту тона (звука): чем интенсивнее колебания воздуха, тем выше звук. Ухо человека способно воспринимать не все звуковые частоты. Доказано, что среднестатистический человек не может слышать звуки частотой ниже 20 Гц и выше 20 кГц. При старении человек всё хуже слышит высокие частоты. Музыканты воспринимают звук в чуть большем диапазоне: 16 герц – 22 килогерца. Частотный диапазон, улавливаемый человеческим ухом, условно делят на три части: нижний звуковой диапазон, средний и верхний.
0 — 16 Гц – Инфразвук (сверхнизкий тон)
16 — 70 Гц – Басы
100 — 120 Гц – Мидбас (средние басы)
500 Гц — 1 кГц – Нижнесредние частоты
4,5 — 5 кГц – Средние частоты
5 — 10 кГц – Средневысокие частоты
10 — 20 кГц – Высокие частоты («верха»)
16 — 22 кГц – Ультразвук (сверхвысокий тон)
Звуки, которые превышают значения в 20 кГц, называются ультразвуком (высокие частоты). Хотя ультразвук и не слышен ухом человека, он широко применяется в медицине и других сферах.
Классическая и эстрадная музыка
С одной стороны, не будем исключать так называемый «человеческий фактор». Ведь все люди разные и интерес к музыкальным направлениям также сугубо индивидуален. Однако, такая занимательная наука, как физика позволяет нам взглянуть на этот вопрос совсем в другом ракурсе.
В классической музыке преобладают высокие частоты, которые наиболее полезны для здоровья и интеллекта, хотя и труднее воспринимаются неискушенным слушателем. Важная роль в классике принадлежит средним частотам (в фольклоре европейских народов средние частоты являются основополагающими).
Вы никогда не задумывались, почему так мало людей любят классическую музыку? Теперь вы знаете. Высокочастотные звуки, используемые в музыке стиля Барокко, обладают большей длиной волны, чем наш мозг способен улавливать. Поэтому некоторые люди испытывают дискомфорт при длительном прослушивании «классики», особенно Барокко. А между тем давно известно, что академическая музыка положительно влияет на организм человека.
Музыка времён Баха приводит к тому, что мозг начинает кроме синхронизации работы полушарий генерировать так называемые Тета-волны, что приводит к улучшению памяти, повышению концентрации, внимание гораздо дольше удерживается на предмете изучения. О том, что музыка периода классицизма оказывает положительное влияние на работоспособность мозга, уже известно
Но в современной эстрадной музыке всё больше преобладают низкие частоты, которые ранее как в классике, так и в народной музыке применялись лишь эпизодически.
Человеческий мозг не очень любит высокочастотные звуки. Этим можно объяснить такую популярность поп-музыки. Звуки её низкочастотны (порядка 40-66 Гц – этот отрезок охватывает нижние и средние басы, не доходя даже до нижнесредних частот). Отсюда и пристрастия людей к «клубной» музыке.
Послушав, например, музыку в стиле 80-х, можно понять, что низкие частотызвука в тот период ещё не применялись, в настоящее же время им уделяется всё большее внимание. Сегодня молодежь убеждена, что низкие частоты звука «украшают» современную музыку, дополняют её той изюминкой, которой не хватало раньше
На самом деле, сами того не подозревая, они «порабощены» не так самой музыкой, как именно низкими частотами, которые, действуя на организм, как следствие создают определенное эмоциональное состояние. Низкие частоты, которые используются в этой музыке, не напрягают, а даже в какой-то степени зомбируют людей. Здесь не следует путать «человеческий фактор» (т.е. личные пристрастия, не имеющие отношения к физическим и акустическим законам) и научные факты.
Музыка как физическое явление (частота волнового биения) вызывает сходное действие у любого человеческого организма и не только. Аналогичное воздействие испытывают любые живые организмы, как, например, животные и растения. Естественно, не являются исключением и люди.
Распространение звука
Проведем эксперимент. Под стеклянным колпаком поместим на поролоновой подушке электрический звонок. Затем откачиваем воздух из колпака. В процессе откачивания воздуха слышно, что звук, который издает звонок, становится все тише, хотя сквозь стекло хорошо видно, что звонок продолжает работать. В конце концов, звук вообще исчезнет.
Какой вывод из этого эксперимента? Для распространения звука необходима определенная среда. Среда может быть разной: воздух, вода, стекло, земля. Главное, чтобы среда, в которой распространяется звук, была упругой при изменении ее формы или объема. Заметим, что воздух не имеет никаких преимуществ по сравнению с другими веществами в части возможности распространения в нем звуков. Разве что в разных средах звуковые волны движутся с разной скоростью.
При распространении звука в среде происходит его поглощения. Знание законов поглощения помогает определять, например, дальность распространения звукового сигнала. Поглощение звука обусловлено причинами, связанными со свойствами самого звука (прежде всего с его частотой) и со свойствами среды. Например, в морях на некоторых глубинах образуются определенные условия для сверхдальнего распространения звука, так называемый водяной звуковой канал. Звук подводного взрыва распространяется в таком канале на расстояние более 5000 км.
При распространении звука в атмосфере происходит его рассеивание. На рассеивание звука влияют температура и давление, сила и скорость ветра.
Изучение того, как рассеивается звук в различных средах, дает информацию о внутреннем строении и физическом состоянии газов, жидкостей и твердых тел. Называется это звуковой локацией.
Обозначение мягкости согласных на письме
В русском языке мягкость согласных обозначается следующими способами:
- При помощи буквы ь (мягкий знак) в конце слова и в середине между согласными: польза — , лось — и др.
Примечание. Мягкий знак не обозначает мягкости согласных в следующих случаях:
а) если служит для разделения согласных, второй из которых й (йот): листья — лис, белье — бе;
б) для различения грамматических категорий: рожь (3 скл., ж.р.) — нож (2 скл., м.р.);
в) для различения форм слов (после шипящих): читаешь (2 л., ед.ч.), режь (форма повелительного наклонения), помочь (неопределенная форма глагола), а также наречий: вскачь, навзничь.
- Посредством букв и, е, ё, ю, я, указывающих на мягкость предшествующего согласного звука и передающих гласные звуки , , , , : лес — , мёд — , лил — , люк — , мял — .
- При помощи последующих мягких согласных: винтик — , слива — .